Improving therapeutic synergy score predictions with adverse effects using multi-task heterogeneous network learning

Yang Yue, Yongxuan Liu, Luoying Hao, Huangshu Lei, Shan He*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

54 Downloads (Pure)

Abstract

Drug combinations could trigger pharmacological therapeutic effects (TEs) and adverse effects (AEs). Many computational methods have been developed to predict TEs, e.g. the therapeutic synergy scores of anti-cancer drug combinations, or AEs from drug-drug interactions. However, most of the methods treated the AEs and TEs predictions as two separate tasks, ignoring the potential mechanistic commonalities shared between them. Based on previous clinical observations, we hypothesized that by learning the shared mechanistic commonalities between AEs and TEs, we could learn the underlying MoAs (mechanisms of actions) and ultimately improve the accuracy of TE predictions. To test our hypothesis, we formulated the TE prediction problem as a multi-task heterogeneous network learning problem that performed TE and AE learning tasks simultaneously. To solve this problem, we proposed Muthene (multi-task heterogeneous network embedding) and evaluated it on our collected drug-drug interaction dataset with both TEs and AEs indications. Our experimental results showed that, by including the AE prediction as an auxiliary task, Muthene generated more accurate TE predictions than standard single-task learning methods, which supports our hypothesis. Using a drug pair Vincristine-Dasatinib as a case study, we demonstrated that our method not only provides a novel way of TE predictions but also helps us gain a deeper understanding of the MoAs of drug combinations.

Original languageEnglish
Article numberbbac564
JournalBriefings in Bioinformatics
Early online date23 Dec 2022
DOIs
Publication statusE-pub ahead of print - 23 Dec 2022

Bibliographical note

© The Author(s) 2022. Published by Oxford University Press.

Keywords

  • therapeutic synergy score prediction
  • multi-task learning
  • heterogeneous graph convolutional network
  • meta-path information aggregation for MoAs
  • biological networks

Fingerprint

Dive into the research topics of 'Improving therapeutic synergy score predictions with adverse effects using multi-task heterogeneous network learning'. Together they form a unique fingerprint.

Cite this