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Abstract

Drug combinations could trigger pharmacological therapeutic effects (TEs) and adverse effects (AEs). Many computational methods
have been developed to predict TEs, e.g. the therapeutic synergy scores of anti-cancer drug combinations, or AEs from drug–drug
interactions. However, most of the methods treated the AEs and TEs predictions as two separate tasks, ignoring the potential
mechanistic commonalities shared between them. Based on previous clinical observations, we hypothesized that by learning the
shared mechanistic commonalities between AEs and TEs, we could learn the underlying MoAs (mechanisms of actions) and ultimately
improve the accuracy of TE predictions. To test our hypothesis, we formulated the TE prediction problem as a multi-task heterogeneous
network learning problem that performed TE and AE learning tasks simultaneously. To solve this problem, we proposed Muthene
(multi-task heterogeneous network embedding) and evaluated it on our collected drug–drug interaction dataset with both TEs and
AEs indications. Our experimental results showed that, by including the AE prediction as an auxiliary task, Muthene generated more
accurate TE predictions than standard single-task learning methods, which supports our hypothesis. Using a drug pair Vincristine—
Dasatinib as a case study, we demonstrated that our method not only provides a novel way of TE predictions but also helps us gain a
deeper understanding of the MoAs of drug combinations.

Keywords: therapeutic synergy score prediction, multi-task learning, heterogeneous graph convolutional network, meta-path informa-
tion aggregation for MoAs, biological networks

Introduction
Drug combination is a more effective treatment than monother-
apy for complex diseases such as cancers [1, 2]. Specifically, the
use of multiple drugs that target different molecular mechanisms
in the same cells not only improves the overall therapeutic effect
(TE; [3, 4]), but also reduces the required concentration of each
drug, which ultimately reduces the potential toxicity [5]. However,
drug combinations also could cause unexpected adverse effects
(AEs) such as heart failure [4, 6]. Therefore, the elucidation of both
the TEs and AEs of drug combinations is critical.

In recent years, many machine learning methods, especially
those based on deep learning have been developed to select drug
combinations with TEs or to predict drug pairs with AEs [7, 8]. For
example, the Deep Neural Network (DNN) based methods Deep-
DDI [9] and DeepSynergy [10] were proposed to predict polyphar-
macy AEs and TEs, respectively. These methods can effectively
reduce corresponding wet experiment costs by predicting high-
confidence drug combinations [1].

However, most of these methods only considered TE or AE
information separately, which might not be optimal. Can we com-
bine TE and AE information to obtain better prediction results for
TEs and AEs? We suspect the answer is positive. The first reason
is that, superficially, both tasks use the drug chemical infor-
mation and drug–target interaction information as the inputs
[9–11], which indicates the relatedness of the tasks. By exploit-
ing the relatedness between the tasks, we hypothesize that we
might improve their learning efficiency and prediction accuracy.
More profoundly, TEs and AEs are both measurable physiological
changes to drug combination treatments, hence by considering
TEs and AEs together, it is more likely to reveal their underlying
MoAs, e.g. their common targets and the downstream molecular
networks [6], which could be beneficial to TE and AE prediction
tasks.

In this paper, we limit our scope to the TE prediction and
propose the following hypothesis: TE prediction could benefit
from the proper use of AE information. We first formulate the
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TE prediction as a multi-task drug (therapeutic) synergy score
regression problem [12] that uses both AE and drug–target interac-
tion (DTI) information. Since drug–target interactions are usually
modelled as a heterogeneous complex network and are also het-
erogeneous to AE information, we propose Muthene—a multi-task
heterogeneous network learning method specifically for synergy
score predictions.

The main characteristic of the proposed Muthene algorithm
is its ability to capture the MoA information for both TE and
AE learning. Specifically, Muthene explicitly extracts four types
of meta-paths as MoAs that represent the putative interaction
pathways between the involved drugs and their shared targets. To
learn the extracted meta-paths, Muthene uses a heterogeneous
graph convolutional network (GCN) based meta-path learning
module with independent Bi-directional Gated Recurrent Unit
(BiGRU) aggregators [13, 14]. For the main task, i.e. the TE pre-
diction, Muthene first uses this meta-path learning module to
extract relevant drug–target interaction information, and then
trains a regressor to predict synergy scores using drug combina-
tion cell line data. Simultaneously, Muthene also conducts the
AE prediction as an auxiliary task using a similar procedure as
the TE prediction task, except that the learning objective is AE
classification instead of synergy score regression. In essence, this
auxiliary task optimizes the model parameters for better synergy
score predictions through backpropagation [15].

We conducted extensive experiments on Muthene. Our exper-
imental results showed that the synergy score prediction ben-
efitted from the auxiliary AE prediction task, which is in line
with our hypothesis. Apart from proposing and testing this novel
hypothesis, our other contributions include:

• We collected and constructed a novel drug–drug interaction
dataset with both TE and AE information for each sample to
test our hypothesis.

• We also demonstrated that BiGRU could be a practical com-
ponent for GCN to learn drug and target interaction pathway
information, which might shed light on the MoAs of the drug
combinations.

Materials
Datasets
Currently, there is no existing dataset to allow us to test the
hypothesis that AE information is beneficial to synergy score
predictions. To address this problem, we constructed a drug–drug
interaction dataset that consisted of AEs, TEs and their relevant
information based on the following datasets: DrugComb dataset
(mainly for TEs; [16]), TWOSIDES dataset (mainly for AEs; [11]) and
Luo et al. dataset (for DTIs; [17]). DrugComb is an online database
that records the therapeutic effect degree of drug–drug pairs on
cancer cell lines (in the form of drug–drug-cell line pairs), and
the degree is measured based on four types of synergy scores
separately, including Bliss [18], Highest Single Agent (HSA; [19]),
Loewe [20] and Zero Interaction Potency (ZIP; [21]). The original
TWOSIDES dataset has 964 kinds of AEs occurring between differ-
ent drug–drug pairs. Luo et al. dataset is a gold standard dataset
in which 1920 DTI pairs were selected.

Since DrugComb and TWOSIDES datasets contain TEs and
AEs information, respectively, we needed to generate a sub-set of
drug–drug pairs that had both TEs and AEs information. In other
words, every existing synergy score (based on a drug–drug-cell line
pair) from DrugComb should have at least one known AE. To guar-
antee that each (drug–drug-cell line) sample has sufficient true

Table 1. The summary of our collected dataset

Data type Total
number

Synergy score types 4
Adverse effect types 20
Drug types 106
Cell line types 60
Gene types for gene expression data 677
Drug–drug-cell line synergy score sample number (4
types of synergy scores provided for each sample)

11 166

Drug–drug adverse effect sample number 2446
Drug-target interaction number 2332
Protein–protein interaction number 91 785

labels, we only selected those corresponding to the top 20 frequent
AEs and the top 60 frequent cell lines from the TWOSIDES and
DrugComb separately.

We then integrated DTI pairs from DrugComb, TWOSIDES
and the Luo et al. dataset with the aforementioned sub-set, and
ensured that every drug in these DTI pairs belonged to the drug
set of the selected sub-set. In order to capture target–target
interactions, e.g. shared pathways and cross-talk, we extracted
and integrated the protein–protein interaction (PPI) network from
TWOSIDES based on the targets in the selected DTI set. Next,
to better capture the drug–drug interaction, we incorporated
drug chemical structure information for every involved drug
by generating Morgan extended-connectivity fingerprints with
a radius of 3 (ECFP6), which are circular topological fingerprints
commonly used in drug repurposing tasks [22, 23]. In addition,
we also integrated gene expression data to depict the biological
variation in the selected 60 cell lines. Specifically, for every
cell line, we retrieved expression values of genes (after 0–1
normalization) that encode the drug targets from the DepMap
database [24], and these targets belonged to the target set of the
selected DTI set. A further illustration of the above steps is in
Figure S1 of the Supplementary Material.

After the above steps with some data preprocessing, e.g. cor-
recting naming errors and inconsistency, we obtained 11 166 drug–
drug-cell line synergy scores (combinations) and 2446 drug–drug
AE samples, which shared the same 106 drugs. Meanwhile, we had
the corresponding 2332 DTIs, 91 785 PPIs, 106 drug ECFP6 features
and 677 gene expression values for each cell line, and the overall
summary of our collected dataset is shown in Table 1.

Methods
Construction of the heterogeneous therapeutic
effect network
We can represent the TE-related drug–target relationships using
a heterogeneous network denoted as G = (V ,E ,R), where νi ∈ V
denotes a node in this network, including drug (D) and protein (T);
E is the set of edges (νi, r, νj) and r ∈ R is the type of edges that
contains drug–drug TE relationships, DTIs and PPIs. Specifically,
the DTIs and PPIs are binary data, i.e. if there is an edge between
the two nodes, the corresponding value is 1 (representing there
is an effective edge), otherwise, it is 0. For drug–drug TE relation-
ships, we converted the synergy score of each drug pair that was
a real value to binary data using a threshold as detailed in the
Supplementary Material.
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Table 2. Description of biological meanings of four pre-defined
meta-paths

Meta-path names Biological meanings

DTD The start drug shares the same protein target
with the end drug

DTTD The start drug and end drug interact with two
protein targets, which also can interact with
each other

DTTTD The start drug and end drug interact with two
protein targets, which also can interact with
another protein target

DD (TE relationships)

The TE relationships between the start drug
and end drug

To explicitly capture the MoA, e.g. the drug–target and target–
target interactions (PPIs) between a drug pair for both TE and
AE learning, we used the concept of meta-path schema to mimic
them, which is a specific combination pattern of edges from the
start (source) drug node ν1 to the end (central) drug node νl+1,
denoted as ν1

r1→ ν2
r2→. . .rl→ νl+1 or ν1ν2 . . . νl+1. Moreover, a meta-path

instance is a sequence of nodes arranged following certain kind
of meta-path schemas, in which the start and end drug nodes are
connected by the edges in this instance, and they are called as a
pair of meta-path neighbors.

Specifically, we defined four meta-path schemas to represent
(TE-related) drug–drug interaction pathways, including: DTD,
DTTD, DTTTD and DD (TE relationships). The specific biological
meanings of these schemas are shown in Table 2.

Because the number of meta-path instances obtained after
traversing the heterogeneous network grows exponentially with
the length of the meta-path schema, to reduce the time and space
complexity, we designed a heuristic sampling strategy. Specifi-
cally, we imposed an extra restriction to the 2nd protein (T) of
DTTTD: this protein also needs to be a target of involved drugs
in the network, and 50% uniform sampling ratio was used to
choose the meta-path instances after applying this restriction.
This could limit the meta-path instance choices for DTTTD into a
more accurate and smaller range.

Overview of Muthene
Muthene consists of three modules: TE-related meta-path learn-
ing, AE prediction and TE prediction modules. The illustration of
Muthene is shown in Figure 1.

First, Muthene constructs a heterogeneous TE network G =
(V ,E ,R) as detailed in section ‘Construction of the heterogeneous
therapeutic effect network’. Then, for each drug–drug-cell line
pair to be predicted in the network, Muthene generates all four
types of meta-path instances for each drug node, to model MoAs
for TE and AE learning. Second, in order to learn these meta-path
instances, they are fed into the TE-related meta-path learning
module to generate the meta-path embeddings of these drug
nodes, which extract the interaction pathway information of the
drug nodes. Third, Muthene generates the ECFP6 fingerprint for
each drug node as its chemical feature embedding and then
concatenates it to the drug meta-path embedding to create a drug
integrated embedding. Fourth, the drug integrated embeddings
and expression data of the cell line are fed to AE and TE prediction
modules to predict the AE probability scores and therapeutic

synergy scores of corresponding drug–drug-cell line pairs. We
detailed each module below.

TE-related meta-path learning module
Acquisition of meta-path instance sets
For the sake of efficiently extracting the MoA related interactive
characteristics from selected meta-path instances, based on the
work of [25], our TE-related meta-path learning module was
designed, which can consider the information of every drug and
target node in the meta-path.

To generate a meta-path node embedding (of type t ∈ T ) for
each drug node, we needed to obtain its meta-path instance sets
as the input. Take the drug node D2 as an example, we traversed
the whole heterogeneous TE network to acquire its four drug-
related meta-path instance sets, i.e. DTD, DTTD, DTTTD and DD
sets. In each set, every instance is a sequence that starts from
an arbitrary (start) drug node and ends at drug node D2 (D2 is
denoted as the end/central node of this instance), following the
node-type arrangement of a specific meta-path schema. These
instances in a set can construct a subgraph centered on D2, which
captures the neighborhood information of D2 under a specific
meta-path schema.

After obtaining four meta-path instance sets of a drug node,
e.g. D2, we needed to give every node in the heterogeneous TE
network a feature as the initial representation in GCN, thus, after
this operation, every meta-path instance was transformed into
a tensor. Specifically, the representations of all drug and target
nodes in the heterogeneous TE network were initialized with the
node-type-specific one-hot vectors to identify every node under
its node category, and these vectors were filled into every meta-
path instance according to the corresponding node-type and node
index. To ensure that the feature dimensions of all nodes in a
meta-path instance were the same for the follow-up computation,
we applied the node-type-specific transformation, for a node i
with node-type t ∈ T , the transformation formula is as follows:

ht ′
i = Wt • ht

i (1)

where ht
i is the one-hot vector of this node, Wt is the trainable

transformation matrix for the node type t ∈ T and ht′
i is the

aligned vector of node i. Because the output dimension of every
transformation matrix is set to be the same, thus for D2, after the
process, D2 will have four 3D tensors corresponding to the four
original meta-path instance sets, each one contains the interac-
tive neighborhood information of a type of meta-path schema of
D2 (for each tensor, the first dimension is the number of instances
in the set, the second is the node number of the instance, the third
is the output dimension); and this rule can be generalized to other
drug nodes.

Generation of drug meta-path embeddings
The BiGRU aggregator
The generated meta-path instance sets of each drug node will
be processed by the corresponding meta-path-specific aggrega-
tor, which generates a new representation for each meta-path
instance and its end node/central node (under one type of meta-
path). The generated representations from the aggregators will
be used to create the meta-path-specific embeddings for the
corresponding end/central node in the next step. For simplicity, a
meta-path instance starting from node i, ending at node j, under
the meta-path type m ∈ M is denoted as Im(i,j)
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Figure 1. Illustration of Muthene. Take an example of predicting the synergy score between D1 and D2 in a certain cell line. The steps include: (A)
Construct a heterogeneous TE network includes drug (D) and protein (T) nodes, and corresponding edges. (B) Acquire four types of meta-path instance
sets for D1 and D2. (C) Send meta-path instance sets of D1 and D2 into the TE-related meta-path learning module respectively, to obtain D1 and D2
meta-path embeddings. Meanwhile, retrieve ECFP6 for D1 and D2. (D) Put all this information into the AE prediction module, to predict AEs between D1
and D2. (E) Put the input and output of the AE prediction module and expression data of the cell line into the TE prediction module, to calculate the
final synergy score.
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We chose the BiGRU as the aggregator, intuitively, every Im(i,j) as
a node feature sequence is reversible, for its end/central node j to
be predicted, Im(i,j) and Im(j,i) contain different directions of interac-
tive pathway information for it. In other words, it is semantically
meaningful to learn Im(i,j) from the start node to the end node
(i.e. extraction of the forward interaction information) and learn
it from the end to the start (i.e. extraction of the backward inter-
action information), and BiGRU could capture such bi-directional
information due to its nature [13]. More specifically, we chose the
final hidden state for Im(i,j) from BiGRU as the effective represen-
tation of Im(i,j), because it included all captured information from

Im(i,j) on both forward and backward directions (denoted as hf
m(i,j)).

In addition, the updated representation of the end/central node of
Im(i,j) can be obtained from the output of BiGRU (denoted as hl

m(i,j)).

The GAT extractor
To create meta-path-specific embeddings for corresponding end/-
central node, we adopted Graph Attention Networks (GAT), a
spatial GCN [26] proposed by Velickovic et al. [27]. The reason
to choose GAT is that it can allocate more accurate weight for
every meta-path-based neighbor’s feature in the generation of the
central node’s embedding.

Similar to other spatial GCNs, GAT aggregates the neighbor
nodes’ features of each central node to generate the central node’s
low-dimensional representation. In our GAT, the central node is
chosen as the end node of every Im(i,j), the neighbor used for the
central node feature aggregation is the start node (i.e. the meta-
path-based neighbor of the end node) in Im(i,j) and the final hidden

state for Im(i,j) (i.e. hf
m(i,j)) from BiGRU is treated as the feature of

the used neighbor. To illustrate this, take the generation of D2
embedding under the meta-path DTD as an example: D2 aggre-
gates its all meta-path-based neighbors’ features in the DTD-
based subgraph, in which the feature of D2 itself is obtained from
BiGRU and the meta-path-based neighbors’ features are replaced
by the corresponding meta-path instances’ representations (as
these representations contain more comprehensive information
than the original neighbors’ features).

More specifically, our GAT method generates embeddings of
central nodes for each meta-path schema independently. For a
central node j under meta-path m ∈ M, the formula for calculating
its embedding hm

j is as follows:

αm
ij =

exp
(
σ

(
aT

m •
[
hl

m(i,j)
‖hf

m(i,j)

]))
∑

k∈Nm
J

exp
(
σ

(
aT

m •
[
hl

m(k,j)
‖hf

m(k,j)

])) (2)

where αm
ij is the allocated weight for node j’s meta-path-based

neighbor i in the feature aggregation process (for generating node
j’s embedding under meta-path m). σ represents the activation
function, aT

m is a trainable attention vector for meta-path m, Nm
j

represents all meta-path-based neighbors of node j under meta-
path m.

After acquiring every αm
ij for node j, we ran a weighted aggre-

gation to generate the embedding of node j under meta-path m
(i.e. hm

j ). To make the GAT extractors more stable, we executed the
weighted aggregation K times independently, and concatenated
the output embedding from each weighted aggregation to create
the new embedding, where ‖ denotes the concatenation opera-
tion:

hm
j =

∥∥∥K

k=1
σ

(∑
i∈Nm

j

αm
ij • hf

m(i,j)

)
(3)

The outputs from GAT extractors are meta-path-specific
embeddings. Take D2 as an example, after running GAT, we could
obtain four (DTD, DTTD, DTTTD and DD (TE relationships)) meta-
path-specific embeddings for D2, these embeddings will be fused
to acquire the final meta-path embedding for D2 in the next step.

The attention mechanism for integrating
meta-path-specific embeddings
After obtaining the meta-path-specific embeddings, for each drug
central node, we needed to combine its embeddings based on the
four meta-path types into one embedding that captured compos-
ite interaction information. To handle the heterogeneous charac-
teristics of different meta-paths, we adopted an attention mech-
anism ([25, 28]; termed as the meta-path combiner) to weighed-
sum the embeddings under different meta-paths automatically.

The attention mechanism starts by calculating the importance
weight ωm

t for fusing meta-paths of node type t ∈ T as follows:

ωm
t = 1

| Vt |
∑
i∈Vt

qT
t • tanh

(
Wt • hm

i + bt
)

(4)

where Vt is the node set of type t, qT
t is the trainable attention

vector for node type t, Wt is the meta-path combination transfor-
mation matrix for node type t, hm

i is the embedding of node i (with
current node type) under meta-path m defined in Equation (3) and
bt is the trainable bias vector for node type t.

Next, we normalized the importance weight of every meta-path
m ∈ M using softmax:

βm
t = exp

(
ωm

t

)
∑M

p∈M exp
(
ω

p
t

) (5)

Utilize the normalized weight, the summarized embedding of
node i with type t ∈ T can be calculated as follows:

ht
i =

M∑
m∈M

βm
t • hm

i (6)

Finally, a non-linearity is added to ht
i , for generating the final

meta-path embedding zt
i , where Wt

P is the projection matrix of
node type t. Based on this, the meta-path embedding of every
involved drug can be obtained.

zt
i = σ

(
Wt

P • ht
i

)
(7)

Integration of drug chemical information
Drug chemical features (e.g. ECFP6) are also important for drug–
drug combination related predictions [29]. However, it is inappro-
priate to use them as the node initialization of the TE-related
meta-path learning module. The reason is that, the heterogeneous
TE network includes drug and target nodes, using drug chemical
features in the case that the target nodes cannot be represented
as such features will be harmful to the unity of the initial node
embedding space [30]. Thus, we used ECFP6 of each drug node
i as its independent chemical feature embedding (denoted as
zC

i ), which was concatenated with the corresponding meta-path
embedding to produce the integrated embedding of this drug.
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The adverse effect probability score prediction
module
To predict the probability of each of 20-selected AEs between a
drug–drug pair, the AE prediction module combines the integrated
embedding of each drug in a drug–drug pair to calculate the AE
probability score:

Pij
AE = σ

(
WAE

[
zdrug

i , zC
i , zdrug

j , zC
j

])
(8)

where WAE is a parameterized decoder. Pij
AE is a 20-dimensional

vector, with each element representing the occurrence probability
of a certain AE. Besides, this is a multi-label classification task,
thus the binary cross entropy (BCE) loss is adopted to evaluate
the difference between the predictions and corresponding ground
truths, where xn is the predicted AE probability score for the nth

sample, yn is the corresponding AE label ground truth and N
denotes the sample number.

�BCE = mean
({− [

yn · logxn + (
1 − yn

) · log (1 − xn)
]}

, n ∈ 1, . . . , N
)
(9)

The therapeutic synergy score prediction module
In our compiled dataset, the synergy scores between drug–drug
pairs are recorded based on the selected 60 cell lines, thus the
gene expression data for each cell line is also added into compu-
tation to mimic the biological variation in different cell lines, for
effectively distinguishing them [31].

Specifically, for obtaining cell line k’s gene expression input
zcell

k , a fully connected layer is used to reduce its original 677-
dimension to a fixed dimension dcell. The synergy score of the drug
i-drug j-cell line k pair is calculated as follows:

Pijk
TE = DNNTE

[
zdrug

i , zC
i , zdrug

j , zC
j , zcell

k , Pij
AE

]
(10)

in which the corresponding AE prediction is explicitly added as the
DNNTE input. DNNTE is the DNN having the same basic structure
as the DeepSynergy by [10], for decoding the complex drug-, cell
line- and AE-related input (i.e. Muthene uses the same basic
structure as DeepSynergy to decode this information). Specifically,
DeepSynergy was constructed based on the conic layers (where
each layer had a half number of neurons compared with the
last layer), and rectified linear unit (ReLU) activation [32] was
additionally applied to every intermediate layer. Furthermore, to
avoid the gradients were propagated from the TE prediction task
back to AE prediction task in the training phase, we treated the
passed Pij

AE as a constant.
To evaluate the model prediction error for this task, we selected

the loss function mean square error (MSE) as follows, in which yn

represents the synergy score ground truth of the nth sample, xn is
the corresponding predicted value from the model and N is the
sample number.

�MSE = mean
({(

xn − yn
)2

}
, n ∈ 1, . . . , N

)
(11)

To summarize, we optimized the whole framework including
the three main modules in an end-to-end fashion, which made the
framework better share all the effective information at once. To
facilitate the training process, due to the different scale of �BCE and
�MSE (i.e. each drug–drug-cell line sample will generate a BCE loss

and a MSE loss for guiding the optimization, and these two losses
have different value scales), we used the hyper-parameters α to
control the weight between the two losses, for combining them as
the overall optimization objective function:

�total = α�MSE + (1 − α) �BCE (12)

It is worth mentioning that, Muthene should not distinguish
drug i-drug j-cell line k and drug j-drug i-cell line k pairs, as
they have the same biological meaning. Thus, we generated each
sample twice (with the different drug–drug pair order) in the
training set, and the estimated values in validation and test sets
were the arithmetic average of predictions of the corresponding
two samples.

Model evaluation settings
To evaluate our method, it is critical to avoid the information
data leakage problem [33], which generates over-optimistic but
misleading results. However, the existing model evaluation set-
tings, i.e. randomly splitting (drug–drug-cell line) samples into
training, validation and test sets suffer from this problem. To
illustrate this problem, suppose we have two drug–drug-cell line
pairs Di − Dj − CK1 and Di − Dj − CK2, if they are allocated into
training and test sets separately, after training, when predicting
the synergy score of Di −Dj −CK2, the model ‘has already seen’ the
information about the Di − Dj combination in the training phase.

To avoid this pitfall, we split drug–drug-cell line pairs based on
drug–drug pairs. In other words, the drug–drug-cell line pairs with
the same drug–drug pair were put into the same set (i.e. training,
validation or test sets). In this case, drug–drug pairs/combinations
in the test set did not occur in the training set, which avoided the
information leakage problem.

Based on this setting, drug–drug-cell line pairs corresponding
to 6:2:2 of all drug–drug pair varieties were allocated into training,
validation and test sets, respectively, in which the training set
was used for building models, the validation set was used for
optimizing parameter settings and the test set was used for test-
ing models and producing corresponding performance evaluation
results. This procedure was repeated five times independently, for
each time, before splitting data, our whole dataset was randomly
shuffled to make different drug–drug pair varieties enter each set.
We computed and reported the average evaluation metrics over
the five independent repeats.

In addition, each drug–drug-cell line pair had 20 AE labels and
a synergy score value. In our study, we conducted our experiments
based on collected four types of synergy scores (i.e. Loewe, Bliss,
HSA and ZIP), respectively. As the synergy score prediction is a
regression task, we used MSE (mean square error), MAE (mean
absolute error) and the Pearson correlation coefficient (abbrevi-
ated as PEARSON) as metrics to evaluate the model performance
on the test set.

Results
AE prediction task benefits synergy score
predictions
The main objective of our experiments is to test the hypothesis
on whether the AE information benefits synergy score predictions
in our multi-task heterogeneous network learning framework. To
this end, we removed the AE prediction module from Muthene
to create a variant named Muthene-AE. For further investiga-
tion, we included three representative methods DeepDDS [34],
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Table 3. Description of the involved comparison methods

Method name Related description

DeepDDS DeepDDS uses GCNs and multilayer perception to encode the drug molecular graph and cell line expression data to
generate drug and cell line embeddings/features respectively. Multiple fully connected layers are then used to process the
concatenation of the generated drug and cell line embeddings for therapeutic effect predictions. Here following their
settings, we used DeepChem [35] tool to generate the initial input graphs of GCNs for our collected drugs.

TranSynergy TranSynergy takes drug target interaction information (as drug features) and cell line features (e.g. gene expression) as the
model input, and utilizes dimension reduction layers followed by a Transformer [36] to encode them. The synergy scores
are also predicted by fully connected layers.

DeepSynergy DeepSynergy is detailed in section ‘The therapeutic synergy score prediction module’, which is a DNN-based method. In
our experiments, it took the concatenation that contains ECFP6 (as drug features) of drug pairs and the cell line gene
expression as the model input (the used ECFP6 is same to that used in Muthene).

Table 4. The averaging evaluation results of involved methods
over the five independent repeats

Synergy score: Loewe MSE MAE PEARSON

Muthene 180.6258 8.9157 0.6353
Muthene-AE 189.2802 9.0448 0.6201
DeepSynergy 203.9883 9.6107 0.5678
DeepSynergyAE 208.3976 9.6589 0.5741
DeepDDS 201.2541 9.6429 0.5714
TranSynergy 273.3114 11.5534 0.3130
Synergy score: Bliss MSE MAE PEARSON
Muthene 45.7406 4.3330 0.5503
Muthene-AE 48.4344 4.3810 0.5155
DeepSynergy 49.6929 4.4324 0.5052
DeepSynergyAE 49.1170 4.4236 0.5093
DeepDDS 61.2581 4.7372 0.3225
TranSynergy 57.7050 4.5757 0.3595
Synergy score: HSA MSE MAE PEARSON
Muthene 30.2391 3.6613 0.4672
Muthene-AE 31.2363 3.7435 0.4343
DeepSynergy 31.9054 3.7471 0.4111
DeepSynergyAE 31.2234 3.7430 0.4301
DeepDDS 35.7116 3.9316 0.3121
TranSynergy 35.2235 3.8679 0.2925
Synergy score: ZIP MSE MAE PEARSON
Muthene 29.2428 3.6736 0.5225
Muthene-AE 29.6737 3.6852 0.5142
DeepSynergy 30.1284 3.7027 0.5061
DeepSynergyAE 30.5356 3.7137 0.4936
DeepDDS 34.7283 3.9232 0.4010
TranSynergy 34.1866 3.8451 0.3890

The bold data indicates the best result on current evaluation metric and
synergy score type.

TranSynergy [1] and DeepSynergy [10]. To illustrate the difference
between Muthene and these methods, we listed them in Table 3.
To examine whether AE information would benefit the single-task
learning methods such as DeepSynergy, we included AE binary
labels of drug pairs as an extra part of its model input, and termed
this variant as DeepSynergyAE. The model running environment
and hyper-parameter settings are provided in Tables S1 and S2
of the Supplementary Material, and the experimental results are
shown in Table 4. In addition, all involved methods were run
under the same random seed.

From the results, we found that, based on MSE, MAE and PEAR-
SON, Muthene achieved overall better performance compared
with Muthene-AE no matter on Loewe, Bliss, HSA or ZIP scores.
The above clearly verified the effectiveness of our proposed
multi-task framework and corresponding basic hypothesis. It is

interesting to see that, the results of DeepSynergyAE were not
always better than those of DeepSynergy among every type of
synergy scores. This indicated that, at least the simple use of
the AE information (e.g. feature concatenation) is not beneficial
enough to the single-task learning method DeepSynergy.

Furthermore, we observed that among the four types of synergy
scores for quantifying therapeutic effects, Loewe consistently
achieved a higher Pearson regression coefficient, which indicated
that it is more suitable to be a learning objective for these machine
learning methods, thus, we adopted Loewe to conduct the fol-
lowing experiments. We also discussed the performance of the
mentioned three representative methods in the Supplementary
Material.

The effectiveness of selected network
components
Based on standard Muthene with the same basic hyper-
parameters (shown in the Supplementary Material) and exper-
imental settings, as well as Loewe synergy score, we did the
ablation study for the important added components in this multi-
task framework. First, to demonstrate the efficiency of using
BiGRU as the aggregator for GCN to extract drug and target
interactive pathway information from pre-defined meta-paths
bi-directionally, we replaced BiGRU with Gated Recurrent Unit
(GRU, i.e. unidirectional aggregator; [37]) and mean function (i.e.
non-directional aggregator) to create two variants called Mut-GRU
and Mut-MEAN. Specifically, for Mut-GRU, all hl

m(i,j) and hf
m(i,j) (in

formulas (2) and (3)) were generated from GRU. For Mut-MEAN,
hl

m(i,j) and hf
m(i,j) were obtained from the original central node’s

feature described in section ‘Acquisition of meta-path instance
sets’ and were obtained by averaging the features of all nodes in
the corresponding meta-path instance, respectively.

We also implemented another variant, denoted as Mut-GIN,
to test the effectiveness of using learnt chemical feature embed-
dings of drugs to replace original ECFP6 features in our method.
Specifically, we used a powerful GCN named Graph Isomorphism
Network (GIN) [38] to learn the molecular graph of each drug,
for generating its new chemical feature embedding. The relevant
detailed description can be found in the Supplementary Material,
and the GIN module was trained along with other modules in
an end-to-end way. The evaluation results of these variants are
shown in Table 5.

We observed that the standard Muthene better-performed Mut-
GRU and Mut-MEAN, suggesting that BiGRU did learn more use-
ful drug and target interactive pathway information from the
meta-paths. Meanwhile, the performance of Mut-GIN was inferior
to that of standard Muthene, which indicated that using the drug
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Table 5. Ablation study results based on involved Muthene
variants

Methods MSE MAE PEARSON

Muthene 180.6258 8.9157 0.6353
Mut-GRU 191.5294 9.3234 0.6002
Mut-MEAN 186.3361 9.0604 0.6279
Mut-GIN 195.8967 9.3091 0.6019

The bold data indicates the best result on current evaluation metric.

Figure 2. Different model evaluation results given various weight ratio R.

chemical feature embedding produced from molecular graphs (by
GCNs) may not be necessary in our task. In addition, we did an
extra ablation study about the performance influence caused by
various feature dimensions of meta-path embeddings (generated
based on the heterogeneous TE network), which is shown in Figure
S2 of the Supplementary Material.

The effects of the weights between the two losses
There is one important hyper-parameter α which is used to
weighted combine the BCE loss and MSE loss of each sample
for better optimizing Muthene. We, therefore, based on Loewe
synergy score, evaluated the sensitivity of α, through adjusting α

while fixing the random seed and other hyper-parameters during
one of the five times data splitting. The model evaluation results
under different weight ratio R (i.e. α

1−α
) are shown in Figure 2.

Based on the results, we can observe that, α was relatively
sensitive, with the increase of ratio R, Muthene gradually achieved
overall better Pearson regression coefficient until R reached at
a threshold, and then it started to get worse. This indicated

that, within a proper R scale, increasing the weight ratio R could
benefit the improvement of synergy score prediction accuracy.
In addition, experimentally, we found that the search range of
R = [0.01, 0.05, 0.1, 0.5, 1, 5, 10] is suitable to find the value of R
to demonstrate our hypothesis.

MoAs elucidation: a case study
To demonstrate how the defined meta-paths reveal MoAs for TE
predictions. We used a drug–drug pair in the test set, Vincristine—
Dasatinib pair, which shows a significant (top ranked) drug synergy
effect on Melanoma cell lines A2058 and UACC62.

Since Muthene generated the meta-path embedding for each
drug separately by aggregating meta-path instances of the drug,
we collected the intersection of the meta-path instances between
these two drugs. Not surprisingly, there is no DTD instance, i.e.
they have different types of drug targets: Vincristine binds to
tubulin proteins to stop the tubulins from forming microtubules,
and Dasatinib inhibits several tyrosine kinases. However, these
two drugs shared the same 114 DTTD instances and 340 DTTTD
instances. From the 114 DTTD instances, we identified the most
frequent meta-path pattern: Vincristine links to a tubulin protein,
e.g. TUBB3, and then links to a kinase family RIPK (Receptor-
interacting serine/threonine-protein kinase), e.g. RIPK1, finally
links to Dasatinib. It is interesting to know that while both the
tubulin protein and RIPK kinase families are the key regulators
in cell death, their MoAs are different: Tubulin proteins cause
apoptosis [39] while RIPK kinases regulate necroptosis [40]. This
finding suggested that by modulating cell death through different
MoAs, e.g. apoptosis and necroptosis, the Vincristine—Dasatinib
pair provides a more effective treatment of advanced metastatic
Melanoma and could overcome potential drug resistance [41].

By inspecting the 340 DTTTD instances, we found another
interesting MoA hypothesis. Among all the targets of the DTTTD
instances, Leucine-rich repeat kinase 2 (LRRK2), a target that
bridges tubulin targets of Vincristine and kinase targets of Dasa-
tinib (e.g. RIPK1 and RIPK4), appears more frequently than other
(target) nodes. A Betweenness Centrality analysis of the network
generated from these DTTTD instances (Figure 3) confirmed that
LRRK2 has the highest Betweenness Centrality, which means that
it is the central or hub node of the network. From a complex
network perspective, a central node should play an important
role in network functions, i.e. Melanoma progression in our case.
However, LRRK2 is a well-known gene associated with Parkinson’s
disease [42]. How does LRRK2 appear in the DTTTD instances
as the putative MoAs for treating Melanoma? A meta-analysis
showed that Parkinson’s disease patients have a high risk of get-
ting Melanoma [43], and a subsequent genomic study confirmed
the mutation of LRRK2 is associated with Melanoma [44]. Inter-
estingly, our Muthene algorithm independently uncovered this
association (through using the meta-path schema). More impor-
tantly, Muthene also hypothesized that the high synergy between
Vincristine—Dasatinib pair could be explained by the indirect mod-
ulation of LRRK2 by Vincristine, which subsequently enhances the
regulation of the kinase targets of Dasatinib.

To summarize, this case study shows that our Muthene algo-
rithm can not only predict the drug synergy effect but also shed
light on the potential MoAs using meta-paths.

Conclusion
Based on the hypothesis that the therapeutic effect predic-
tion task could benefit from adverse effect information, we
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Figure 3. The network constituted by all DTTTD instances shared by Vincristine and Dasatinib.

formulated the therapeutic synergy score prediction as a multi-
task
heterogeneous network learning problem that simultaneously
learned synergy score and adverse effect predictions for drug–
drug pairs. To solve this problem, we proposed Muthene, a multi-
task heterogeneous network learning method specifically for
synergy score predictions.

To capture MoA information for the both predictions, which is
critical for rational drug repurposing, Muthene extracted meta-
paths to represent the underlying chemical and/or molecular net-
work interactions. Our experimental results showed that Muthene
generated more accurate synergy score predictions than standard
single-task learning methods, which supports our hypothesis. Our
method is a novel way to predict TEs based on multiple sources
of information, including utilizing AE information, which can

effectively improve the TE prediction accuracy. More significantly,
using a drug pair Vincristine—Dasatinib as a case study, Muthene
generated a few interesting hypotheses about the underlying
MoAs of drug combinations. For example, Muthene revealed the
synergistic effects of apoptosis and necroptosis caused by Vin-
cristine and Dasatinib, respectively, and the additive effect exerted
by LRRK2, an unexpected cancer target indirectly modulated by
Vincristine.

However, we must admit that the meta-paths are an over-
simplification of the complex molecular and chemical networks,
which might not reflect the complexity of interactions between
drugs and targets. We plan to introduce more semantically mean-
ingful meta-paths from external data sources to further improve
the performance of Muthene in terms of the TE prediction and
MoA illustration.
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Key Points

• We proposed a hypothesis based on previous clinical
observations that by learning the shared mechanistic
commonalities between adverse effects (AEs) and thera-
peutic effects (TEs), we could learn the underlying MoAs
(mechanisms of actions) and ultimately improve the
accuracy of TE predictions.

• To test our hypothesis, we formulated the TE prediction
problem as a multi-task heterogeneous network learn-
ing problem that performed TE and AE learning tasks
simultaneously, and solved this problem by a novel het-
erogeneous graph convolutional network based method
Muthene.

• To better capture the MoAs of drug combinations for
both TE and AE learning, we explicitly pre-defined four
meta-paths with different biological meanings. To eval-
uate our method, we collected and constructed a novel
drug–drug interaction dataset that had both TE and AE
information for each sample.

• The experimental results demonstrated the feasibility
and effectiveness of our hypothesis.

Supplementary material
Supplementary data are available online at Briefings in Bioinformat-
ics.
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