The Shape of Protein Crowders is a Major Determinant of Protein Diffusion

Jessica Balbo, Paolo Mereghetti, Dirk-Peter Herten, Rebecca C. Wade

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

As a model for understanding how molecular crowding influences diffusion and transport of proteins in cellular environments, we combined experimental and theoretical approaches to study the diffusion of proteins in highly concentrated protein solutions. Bovine serum albumin and γ-Globulin were chosen as molecular crowders and as tracers. These two proteins are representatives of the main types of plasma protein and have different shapes and sizes. Solutions consisting of one or both proteins were studied. The self-diffusion coefficients of the fluorescently labeled tracer proteins were measured by means of fluorescence correlation spectroscopy at a total protein concentration of up to 400 g/L. γ-Globulin is found to have a stronger influence as a crowder on the tracer self-diffusion coefficient than Bovine serum albumin. Brownian dynamics simulations show that the excluded volume and the shape of the crowding protein have a significantly stronger influence on translational and rotational diffusion coefficients, as well as transient oligomerization, than hydrodynamic or direct interactions. Anomalous subdiffusion, which is not observed at the experimental fluorescence correlation spectroscopy timescales (>100 μs), appears only at very short timescales (<1 μs) in the simulations due to steric effects of the proteins. We envision that the combined experimental and computational approach employed here can be developed to unravel the different biophysical contributions to protein motion and interaction in cellular environments by systematically varying protein properties such as molecular weight, size, shape, and electrostatic interactions.
Original languageEnglish
JournalBiophysical Journal
DOIs
Publication statusPublished - 1 Apr 2013

Fingerprint

Dive into the research topics of 'The Shape of Protein Crowders is a Major Determinant of Protein Diffusion'. Together they form a unique fingerprint.

Cite this