Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases characterized by blood cytopenias that occur as a result of somatic mutations in hematopoietic stem cells (HSC). MDS leads to ineffective haematopoiesis, and as many as 30% of patients progress to acute myeloid leukaemia (AML). The mechanisms by which mutations accumulate in HSC during aging remain poorly understood. Here we identify a novel role for MYBL2 in DNA double-strand break (DSB) repair in HSC. In MDS patients, low MYBL2 levels associated with and preceded transcriptional deregulation of DNA repair genes. Stem/progenitor cells from these patients display dysfunctional DSB repair kinetics after exposure to ionizing radiation (IR). Haploinsufficiency of Mybl2 in mice also led to a defect in the repair of DSB induced by IR in HSC and was characterized by unsustained phosphorylation of the ATM substrate Kap1 and telomere fragility. Our study identifies MYBL2 as a crucial regulator of DSB repair and identifies MYBL2 expression levels as a potential biomarker to predict cellular response to genotoxic treatments in MDS and identify patients with defects in DNA repair. Such patients with worse prognosis may require a different therapeutic regimen to prevent progression to AML.
Original language | English |
---|---|
Pages (from-to) | 5767-5779 |
Number of pages | 13 |
Journal | Cancer Research |
Volume | 78 |
Issue number | 20 |
Early online date | 6 Aug 2018 |
DOIs | |
Publication status | Published - 15 Oct 2018 |