Research output per year
Research output per year
Accepting PhD Students
PhD projects
Dr Petermann is interested in supervising doctoral researchers in
the following areas:
- Fundamental mechanisms of DNA replication stress and DNA repair
- Oncogene-induced replication stress
- Conflicts between replication and transcription
- Targeted cancer therapies
- Cancer chemotherapy and replication stress
General doctoral research enquiries: [email protected]
Research activity per year
Career to date
2023 - Professor of Genome Stability, University of Birmingham
2020 - 2023 Reader, University of Birmingham
2014 - 2020 Senior Lecturer, University of Birmingham
2010 - 2014 Lecturer, University of Birmingham
2007 - 2010 Postdoctoral researcher, University of Oxford
2004 - 2007 Postdoctoral researcher, University of Sussex
External Engagement
2021 - Editorial Board, British Journal of Cancer
2013 - UK Genome Stability Network Committee
2020 - 2022 Conference Theme Panel RAI, Biochemical Society
2020 - 2022 Member of funding committee
Member of junior PI recruitment panel
DNA replication is the process by which dividing cells copy their genetic information. Replication is very important but also dangerous for cells, because if obstacles inhibit the movement of the replication apparatus, this can lead to DNA damage, mutations or cell death. This is called replication stress (Jones and Petermann, 2012). My group investigates molecular mechanisms of replication stress in cancer development and -treatment.
Transcription-replication conflicts in cancer
Replication stress, or replication-associated DNA damage, occurs frequently in cancer. There is a growing interest in targeting oncogene-induced replication stress for cancer therapy. Effective targeting will require mechanistic understanding of how oncogenes induce replication stress. It is widely appreciated that oncogenes can promote replication stress by de-regulating the cell cycle machinery to increase proliferation. However to promote proliferation, oncogenes also need to hyper-activate the basal transcription machinery. We use DNA fibre approaches to identify new mechanisms of oncogene-induced replication stress (Jones et al., 2013, Kotsantis et al., 2016, Bowry et al., 2021).
We have evidence for transcription hyper-activation as an alternative and important replication stress mechanism. We recently reported that H-RasV12 induces replication-transcription conflicts, not by de-regulating the cell cycle, but by increasing expression of a general transcription factor (TBP) and global RNA synthesis (Kotsantis et al., 2016, Bowry et al., 2021). We showed that TBP overexpression can promote replication stress independently of oncogenes. We are further investigating the mechanisms of oncogene-induced transcription-replication conflicts. We are also investigating transcription-replication conflicts induced by a new class of cancer drugs called BET inhibitors (Da Costa et al., 2013; Bowry et al., 2018).
Homologous recombination at stalled replication forks
Homologous recombination (HR) is a remarkable genome maintenance pathway that brings together DNA replication and DNA repair. Because of this, it is absolutely central to diseases characterized by replication stress or treated with replication stress-inducing agents.
It is increasingly evident that HR processes frequently occur at perturbed replication forks, where HR performs novel roles that are distinct from its classic function in DNA double-strand break repair. New insights into the roles of HR at stressed replication forks are relevant for cancer development and therapy. We are particularly interested in understanding how HR can slow and stall forks.
We use DNA fibre approaches to identify new roles for HR and the central HR factor RAD51 at stalled replication forks. We study how RAD51 modulates fork progression in response to classic chemotherapy, targeted cancer therapies, and environmental mutagens (Jones et al, 2014; Ronson et al., 2018; Piberger et al., 2020)
2013 PGCert in Higher Education
2001 - 2004 PhD in Biochemistry
1996 - 2001 First degree (German Diplom) in Biochemistry
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Review article
Research output: Contribution to journal › Review article › peer-review
Research output: Contribution to journal › Review article › peer-review
Research output: Contribution to journal › Article › peer-review
Petermann, E. (Co-Investigator) & Davies, C. (Principal Investigator)
1/11/24 → 31/10/27
Project: Research
Parish, J. (Co-Investigator) & Petermann, E. (Principal Investigator)
1/06/22 → 31/05/25
Project: Research Councils
Petermann, E. (Principal Investigator)
3/01/22 → 2/01/25
Project: Research Councils
Kanhere, A. (Co-Investigator) & Petermann, E. (Principal Investigator)
1/09/19 → 31/08/25
Project: Research
Mehanna, H. (Researcher), Petermann, E. (Researcher), Tennant, D. (Co-Investigator), Kokalova Wheldon, T. (Co-Investigator), Bishop, J. (Co-Investigator), Watts, C. (Researcher), Parish, J. (Researcher), Parsons, J. (Principal Investigator), Gatz, S. (Researcher), Phoenix, B. (Co-Investigator) & Beggs, A. (Researcher)
1/01/25 → 31/12/29
Project: Research
Petermann, E. (Chair)
Activity: Academic and Industrial events › Conference, workshop or symposium
Petermann, E. (Invited speaker)
Activity: Academic and Industrial events › Guest lecture or Invited talk
Petermann, E. (Organiser)
Activity: Academic and Industrial events › Conference, workshop or symposium
Petermann, E. (Panel Member)
Activity: Membership › Membership of working group or committee
Petermann, E. (Recipient), Oct 2018
Prize: Prize (including medals and awards)
Petermann, E. (Recipient), 1 Oct 2008
Prize: Fellowship awarded competitively
Petermann, E. (Recipient), 16 Sept 2010
Prize: Prize (including medals and awards)