Monitoring the injured brain: Registered, patient specific atlas models to improve accuracy of recovered brain saturation values

Michael Clancy, Antonio Belli, David Davies, Samuel J E Lucas, Zhangjie Su, Hamid Dehghani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)


The subject of superficial contamination and signal origins remains a widely debated topic in the field of Near Infrared Spectroscopy (NIRS), yet the concept of using the technology to monitor an injured brain, in a clinical setting, poses additional challenges concerning the quantitative accuracy of recovered parameters. Using high density diffuse optical tomography probes, quantitatively accurate parameters from different layers (skin, bone and brain) can be recovered from subject specific reconstruction models. This study assesses the use of registered atlas models for situations where subject specific models are not available. Data simulated from subject specific models were reconstructed using the 8 registered atlas models implementing a regional (layered) parameter recovery in NIRFAST. A 3-region recovery based on the atlas model yielded recovered brain saturation values which were accurate to within 4.6% (percentage error) of the simulated values, validating the technique. The recovered saturations in the superficial regions were not quantitatively accurate. These findings highlight differences in superficial (skin and bone) layer thickness between the subject and atlas models. This layer thickness mismatch was propagated through the reconstruction process decreasing the parameter accuracy.

Original languageEnglish
Title of host publicationDiffuse Optical Imaging V
PublisherSociety of Photo-Optical Instrumentation Engineers
ISBN (Print)9781628417036
Publication statusPublished - 16 Jul 2015
EventDiffuse Optical Imaging V - Munich, Germany
Duration: 23 Jun 201525 Jun 2015

Publication series

NameSPIE Proceedings


ConferenceDiffuse Optical Imaging V

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Monitoring the injured brain: Registered, patient specific atlas models to improve accuracy of recovered brain saturation values'. Together they form a unique fingerprint.

Cite this