SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response

Philip Bland, Harry Saville, Patty T. Wai, Lucinda Curnow, Gareth Muirhead, Jadwiga Nieminuszczy, Nivedita Ravindran, Marie Beatrix John, Somaieh Hedayat, Holly E. Barker, James Wright, Lu Yu, Ioanna Mavrommati, Abigail Read, Barrie Peck, Mark Allen, Patrycja Gazinska, Helen N. Pemberton, Aditi Gulati, Sarah NashFarzana Noor, Naomi Guppy, Ioannis Roxanis, Guy Pratt, Ceri Oldreive, Tatjana Stankovic, Samantha Barlow, Helen Kalirai, Sarah E. Coupland, Ronan Broderick, Samar Alsafadi, Alexandre Houy, Marc-Henri Stern, Stephen Pettit, Jyoti S. Choudhary, Syed Haider, Wojciech Niedzwiedz, Christopher J. Lord, Rachael Natrajan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

66 Downloads (Pure)

Abstract

SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1MUT) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1MUT cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction. This results in subsequent failure to resolve DNA replication intermediates and G2/M cell cycle arrest. These defects are rescued through CINP overexpression, or further targeted by a combination of ataxia-telangiectasia mutated and PARP inhibition. In vivo, PARPi produce profound antitumor effects in multiple SF3B1MUT cancer models and eliminate distant metastases. These data provide the rationale for testing the clinical efficacy of PARPi in a biomarker-driven, homologous recombination proficient, patient population.
Original languageEnglish
Pages (from-to)1311-1323
Number of pages13
JournalNature Genetics
Volume55
Issue number8
Early online date31 Jul 2023
DOIs
Publication statusPublished - Aug 2023

Fingerprint

Dive into the research topics of 'SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response'. Together they form a unique fingerprint.

Cite this