Projects per year
Abstract
The recently proposed Krĕin space Support Vector Machine (KSVM) is an efficient classifier for indefinite learning problems, but with quadratic to cubic complexity and a non-sparse decision function. In this paper a Krĕin space Core Vector Machine (iCVM) solver is derived. A sparse model with linear runtime complexity can be obtained under a low rank assumption. The obtained iCVM models can be applied to indefinite kernels without additional preprocessing. Using iCVM one can solve CVM with usually troublesome kernels having large negative eigenvalues or large numbers of negative eigenvalues. Experiments show that our algorithm is similar efficient as the Krĕin space Support Vector Machine but with substantially lower costs, such that also large scale problems can be processed.
Original language | English |
---|---|
Pages (from-to) | 187-195 |
Journal | Pattern Recognition |
Volume | 71 |
Early online date | 3 Jun 2017 |
DOIs | |
Publication status | Published - 1 Nov 2017 |
Keywords
- Indefinite learning
- Krĕin space
- Classification
- Core Vector Machine
- Nyström
- Sparse
- Linear complexity
Fingerprint
Dive into the research topics of 'Indefinite Core Vector Machine'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Personalised Medicine through Learning in the Model Space
Engineering & Physical Science Research Council
1/10/13 → 31/03/17
Project: Research Councils