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Highlights

• Indefinite Core Vector Machine (iCVM) is proposed

• approximation concepts are provided leading to linear runtime complexity

under moderate assumptions

• sparsification of iCVM is proposed showing that in many cases also a low

memory complexity can be obtained with an acceptable loss in accuracy

• the algorithm is compared to a number of related methods and multiple

datasets showing competitive performance but with much lower computa-

tional and memory complexity
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Abstract

The recently proposed Krĕin space Support Vector Machine (KSVM) is an ef-

ficient classifier for indefinite learning problems, but with quadratic to cubic com-

plexity and a non-sparse decision function. In this paper a Krĕin space Core Vector

Machine (iCVM) solver is derived. A sparse model with linear runtime complexity

can be obtained under a low rank assumption. The obtained iCVM models can

be applied to indefinite kernels without additional preprocessing. Using iCVM one

can solve CVM with usually troublesome kernels having large negative eigenvalues

or large numbers of negative eigenvalues. Experiments show that our algorithm is

similar efficient as the Krĕin space Support Vector Machine but with substantially

lower costs, such that also large scale problems can be processed.

Keywords: indefinite learning, Krĕin space, classification, core vector machine,

Nyström, sparse, linear complexity

1. Introduction

Learning of classification models for indefinite kernels received substantial in-

terest with the advent of domain specific similarity measures. Indefinite kernels

are a severe problem for most kernel based learning algorithms because classical

mathematical assumptions such as positive definiteness, used in the underlying op-

timization frameworks are violated. As a consequence e.g. the classical Support

Vector Machine (SVM) [1] has no longer a convex solution - in fact, most stan-

dard solvers will not even converge for this problem [2]. Researchers in the field

of e.g. psychology [3], vision [4, 5, 6] and machine learning [7, 8] have criticized

the typical restriction to metric similarity measures. In fact in [8] for multiple

examples from real problems it is shown that many real life problems are better

Email addresses: schleify@cs.bham.ac.uk (Frank-Michael Schleif), pxt@cs.bham.ac.uk
(Peter Tino)
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addressed by e.g. kernel functions which are not restricted to be based on a metric.

Non-metric measures (leading to kernels which are not positive semi-definite (non-

psd)) are common in many disciplines. The use of divergence measures [9, 10, 11]

is very popular for spectral data analysis in chemistry, geo- and medical sciences

[12, 13], and are in general not metric. Also the popular Dynamic Time Warping

(DTW) [14] algorithm provides a non-metric alignment score which is often used

as a proximity measure between two one-dimensional functions of different length.

In image processing and shape retrieval indefinite proximities are often obtained by

means of the inner distance [15] - another non-metric measure. Further examples

can be found in physics, where problems of the special relativity theory naturally

lead to indefinite spaces. Further prominent examples for genuine non-metric prox-

imity measures can be found in the field of bioinformatics where classical sequence

alignment algorithms (e.g. smith-waterman score [16]) produce non-metric proxim-

ity values. Multiple authors argue that the non-metric part of the data contains

valuable information and should not be removed [7, 6].

Furthermore, it has been shown [7, 2, 17] that work-arounds such as eigen-

spectrum modifications are often inappropriate or undesirable, due to a loss of

information and problems with the out-of sample extension.

Due to its strong theoretical foundations, Support Vector Machine (SVM) has

been extended for indefinite kernels in a number of ways [18, 19, 20]. Initial work

focused on preprocessing the kernel matrix through heuristics to address the in-

definiteness [21]. A recent survey on indefinite learning is given in [17]. In [2] a

stabilization approach was proposed to calculate a valid SVM model in the Krĕin

space which can be directly applied on indefinite kernel matrices. This approach

has shown great promise in a number of learning problems but has intrinsically

quadratic to cubic complexity and provides a dense decision model. This paper ex-

tends the work of [2] by deriving an equivalent optimization problem but within the

Core Vector Machine (CVM) framework [22]. To ensure linear runtime complexity

we combine the proposed indefinite CVM with a low rank kernel approximation

using the Nyström approach [23]. The latter one will also serve as a key element

to sparsify the final solution such that an easy out of sample extension becomes

possible. We empirically demonstrate the effectiveness of the proposed approach in

comparison to the KSVM.
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1.1. Indefinite kernels and existing approaches

Domain specific proximity measures, such as alignment scores in bioinformatics

[24], the edit-distance for structural pattern recognition [25], shape retrieval mea-

sures (e.g. the inner distance [15]) and many other ones, generate non-metric or

indefinite similarities or dissimilarities. Classical learning algorithms such as kernel

machines assume metric properties in the underlying data space and may not be

applicable for this type of data.

Only few machine learning methods have been proposed for non-metric prox-

imity data, e.g. the indefinite kernel fisher discriminant (iKFD) [26, 27] or the

probabilistic classification vector machine (PCVM) [28]. The iKFD is a classical

fisher discriminant approach, maximizing the between class variance of the classes,

but formulated in the Krĕin space, by using an equivalence relation to the classical

kernel Fisher Discriminant Analysis1. In its original formulation, iKFD provides

models which are naturally non-sparse and has cubic runtime complexity. The

PCVM, on the other hand, constitutes a probabilistic model, operating with basis

functions in the input space without the need for the existence of feature space

(through Mercer kernel). While the iKFD is a batch optimization algorithm the

PCVM is formulated by a gradient descent strategy with potentially slow conver-

gence for a number of problems. The PCVM algorithms has cubic complexity in

the first iterations with a substantial speed-up during further iterations due to an

inherent sparsification strategy.

Recently the Krĕin space Support Vector Machine (KSVM) was proposed in [2]

leading to an SVM equivalent formulation, but fully formalized in the Krĕin space

by replacing the SVM minimization problem with a stabilization problem. As shown

in [2] it turns out that solving the stabilization problem (detailed in [2],sec 2) can

be achieved by flipping the negative eigenvalues of the kernel spectrum. It is shown

in [2] that this strategy has a theoretical foundation and by solving the stabilization

problem one can obtain the solution in the original Krĕin space. This allows us to

classify any new point without having to transform it.

iKFD and PCVM have been found to be very effective but unlike KSVM, they

are not based on the sound theoretical framework of the SVM structural risk mini-

mization principle (SRM) [1]. Furthermore, there are a number of other advantages

of KSVM as outlined in [2]. Hence, it is very attractive to obtain a low cost SVM

formulation in the Krĕin space, which is the focus of this paper.

1We do not detail the approach here because the paper will focus on an extension of KSVM
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Dataset #samples proximity measure and data source
CatCortex 65 cortical connexion strength [27]
Aural 100 similarity based on human perception [29]
balls 3 200 synthetic dissimilarity [30]
Protein ksvm 213 sequence-alignment similarity [27]
Patrol 241 similarity based on human memory [29]
CoilYork 228 Graph matching [30]
Chicken15 45 446 weighted edit distance between images contours [27]
Chicken29 45 446 weighted edit distance between images contours [27]
Diabetes tanh 768 tanh kernel [19]
Sonatas 1068 normalized compression distance on midi files [31]
Delft 1500 dynamic time warping [17]
a1a 1605 tanh kernel [19]
zongker 2000 template matching on handwritten digits [27]
prodom 2604 pairwise structural alignment on proteins [27]
PolydistH57 4000 Hausdorff distance [27]
chromo 4200 edit distance on chromosomes [27]
Mushrooms 8124 tanh kernel [32]
swiss-10k ≈ 10k smith waterman alignment on protein sequences [17]
checker-100k 100.000 tanh kernel (indefinite)
skin 245.057 tanh kernel (indefinite)[33]
checker 1 Mill tanh kernel (indefinite)

Table 1: Overview of the different datasets. We provide the dataset size (N) and the origin of the
indefiniteness. For vectorial data the indefiniteness is caused artificial by using the tanh kernel.
But most often it occurs due to a domain specific non-metric similarity measure.

1.2. Contributions

We consider the problem of training a Core Vector Machine with an indefinite

kernel. The present paper is based on [2] in which the stabilization idea is proposed

and on effective Nyström approximation concepts given in [34], both applicable

to indefinite kernels. To ensure linear runtime complexity in contrast to at least

quadratic costs of the KSVM we derive an indefinite Core Vector Machine using a

low rank kernel approximation which solves the original indefinite SVM problem at

low costs. We also suggest a sparsification procedure to simplify the out of sample

extension. The Nystöm approximation is not necessary to obtain an indefinite Core

Vector Machine, but to keep linear runtime and memory complexity which is lost

otherwise.

2. Krĕin space SVM

The Krĕin Space SVM (KSVM) [2], replaced the classical SVM minimization

problem by a stabilization problem in the Krĕin space. The respective equivalence

between the stabilization problem and a standard convex optimization problem was

shown in [2]. Let xi ∈ X, i ∈ {1, . . . , N} be training points in the input space X ,

5
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with labels yi ∈ {−1, 1}, representing the class of each point. The input space X is

often considered to be Rd , but can be any suitable space due to the kernel trick.

For a given positive C, SVM is the minimum of the following regularized empirical

risk functional

JC(f, b) = min
f∈H,b∈R

1

2
‖f‖2H + CH(f, b) (1)

H(f, b) =
N∑

i=1

max(0, 1− yi(f(xi) + b))

Using the solution of Equation (1) as (f∗C , b
∗
c) := arg min JC(f, b) one can introduce

τ = H(f∗C , b
∗
C) and the respective convex quadratic program (QP)

min
f∈H,b∈R

1

2
‖f‖2H s.t.

N∑

i=1

max(0, 1− yi(f(xi) + b)) ≤ τ (2)

where we detail the notation in the following. This QP can be also seen as the

problem of retrieving the orthogonal projection of the null function in a Hilbert

space H onto the convex feasible set. The view as a projection will help to link the

original SVM formulation in the Hilbert space to a KSVM formulation in the Krein

space. First we need to repeat a few definitions, widely following [2]. A Krĕin space

is an indefinite inner product space endowed with a Hilbertian topology.

Definition 1 (Inner products and inner product space). Let K be a real vector

space. An inner product space with an indefinite inner product 〈·, ·〉K on K is

a bi-linear form where all f, g, h ∈ K and α ∈ R obey the following conditions:

Symmetry: 〈f, g〉K = 〈g, f〉K, linearity: 〈αf + g, h〉K = α〈f, h〉K + 〈g, h〉K and

〈f, g〉K = 0 ∀g ∈ K implies f = 0.

An inner product is positive definite if ∀f ∈ K, 〈f, f〉K ≥ 0, negative definite if

∀f ∈ K, 〈f, f〉K ≤ 0, otherwise it is indefinite. A vector space K with inner product

〈·, ·〉K is called inner product space.

Definition 2 (Krĕin space and pseudo Euclidean space). An inner product space

(K, 〈·, ·〉K) is a Krĕin space if there exist two Hilbert spaces H+ and H− spanning

K such that ∀f ∈ K, f = f+ + f− with f+ ∈ H+, f− ∈ H− and ∀f, g ∈ K,

〈f, g〉K = 〈f+, g+〉H+ − 〈f−, g−〉H− . A finite-dimensional Krĕin-space is a so called

pseudo Euclidean space (pE).

If H+ and H− are reproducing kernel hilbert spaces (RKHS), K is a reproducing

kernel Krĕin space (RKKS). For details on RKHS and RKKS see e.g. [35]. In this

6
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case the uniqueness of the functional decomposition (the nature of the RKHSs H+

and H− ) is not guaranteed. In [36] the reproducing property is shown for a RKKS

K. There is a unique symmetric kernel k(x, x) with k(x, ·) ∈ K such that the

reproducing property holds (for all f ∈ K, f(x) = 〈f, k(x, ·)〉K) and k = k+ − k−
where k+ and k− are the reproducing kernels of the RKHSs H+ and H−.

As shown in [36] for any symmetric non-positive kernel k that can be decomposed

as the difference of two positive kernels k+ and k−, a RKKS can be associated to it.

In [2] it was shown how the classical SVM problem can be reformulated by means

of a stabilization problem. This is necessary because a classical norm as used in Eq.

(2) does not exist in the RKKS but instead the norm is reinterpreted as a projection

which still holds in RKKS and is used as a regularization technique [2]. This allows

to define SVM in RKKS (viewed as Hilbert space) as the orthogonal projection of

the null element onto the set [2]:

S = {f ∈ K, b ∈ R|H(f, b) ≤ τ} and 0 ∈ ∂bH(f, b)

where ∂b denotes the sub differential with respect to b. The set S leads to a unique

solution for SVM in a Krĕin space [2]. As detailed in [2] one finally obtains a

stabilization problem which allows one to formulate an SVM in a Krĕin space.

stabf∈K,b∈R
1

2
〈f, f〉K s.t.

l∑

i=1

max(0, 1− yi(f(xi) + b)) ≤ τ (3)

where stab means stabilize as detailed in the following: In a classical SVM in

RKHS the solution is regularized by minimizing the norm of the function f . In

Krĕin spaces however minimizing such a norm is meaningless since the dot-product

contains both the positive and negative components. Thats why the regularization

in the original SVM through minimizing the norm f has to be transformed in

the case of Krĕin spaces into a min-max formulation, where we jointly minimize

the positive part and maximize the negative part of the norm. The authors of

[36] termed this operation the stabilization projection, or stabilization. Further

mathematical details can also be found in [37, 38]. An example illustrating the

relations between minimum, maximum and the projection/stabilization problem in

the Krĕin space is illustrated in [2].

In [2] it is further shown that the stabilization problem Eq. (3) can be written as

a minimization problem using a semi-definite kernel matrix. By defining a projection

operator with transition matrices it is also shown how the dual RKKS problem for

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the SVM can be related to the dual in the RKHS. We refer the interested reader

to [2]. One - finally - ends up with a flipping operator applied to the eigenvalues

of the indefinite kernel matrix2 K as well as to the α parameters obtained from

the stabilization problem in the Krĕin space, which can be solved using classical

optimization tools on the flipped kernel matrix. This permits to apply the obtained

model from the Krĕin space directly on the non-positive input kernel without any

further modifications. The algorithm is shown in Alg. 1. There are four major steps:

1) an eigen-decomposition of the full kernel matrix, with cubic costs (which can be

potentially restricted to a few dominating eigenvalues - referred to as KSVM-L); 2)

a flipping operation; 3) the solution of an SVM solver on the modified input matrix;

4) the application of the projection operator obtained from the eigen-decomposition

on the α vector of the SVM model. U in Alg. 1 contains the eigenvectors, D is a

Algorithm 1 Krĕin Space SVM (KSVM) - adapted from [2].

Krĕin SVM:
[U,D] = EigenDecomposition(K)
K̂ = USDU> with S = sign(D) K̂ is not generated as a full matrix for iCVM
- see text
[α, b] = SVMSolver(K̂, Y, C)
α̃ = USU>α
return α̃, b;

diagonal matrix of the eigenvalues and S is a matrix containing only {1,−1} on the

diagonal as obtained from the respective function sign.

As pointed out in [2], this solver produces an exact solution for the stabilization

problem. The main weakness of this Algorithm is, that it requires the user to pre-

compute the whole kernel matrix and to decompose it into eigenvectors/eigenvalues.

Further today’s SVM solvers have a theoretical, worst case complexity of ≈ O(N2).

The other point to mention is that the final solution α̃ is not sparse. We will address

these points in the following.

3. Core Vector Machine

The Core Vector Machine (CVM) was initially proposed in [22] and it was shown

that the SVM can be formulated as a minimum enclosing ball (MEB) problem

leading to the CVM algorithm. This can be also done for arbitrary positive semi-

definite (psd) input kernels as shown in [39]. The CVM is a very efficient algorithm

2Obtained by evaluating k(x, y) for training points x, y.

8
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providing accurate classification models for large scale data at very low costs [39],

having a theoretical, worst case complexity of ≈ O(N).

In [40] the CVM approach was criticized to be less stable then expected under

some conditions, but this was partially caused by an error in the implementation and

also due to the use of additional optimization tricks3. To use the given (potentially

approximated) non-psd input kernel for CVM we have to modify the kernel matrix.

Let K be the (approximated) indefinite kernel matrix. The kernel is adapted to a

two class classification problem as done in [22] 4:

K ′ = Y ⊗K + Y +
δ

C
(4)

where Y is the label matrix with entries Yi,j = yiyj , ⊗ is the element-wise multipli-

cation and δ
C is an all zero indicator matrix with non-vanishing entries 1

C only on

the diagonal. C is the user defined SVM penalty parameter. In the second step we

modify the kernel K ′ with respect to the approach suggested in KSVM to link the

original CVM minimization problem to the stabilization problem (see [2]) as shown

in Alg. 1. This leads to a psd kernel K̂ for a two-class classification problem as

necessary for the CVM solver. Once more it should be noted that the eigenvalue

correction used in Alg. 1 is a natural consequence of the underlying stabilization

procedure as detailed in [2] and not a heuristic choice. The final model can be

applied on an unmodified indefinite kernel.

If K̂ has constant values on the diagonal, it was shown in [39] that this directly

leads to a MEB optimization problem. If K̂i,i is non-constant, the generalized

CVM can be used [39]. To avoid high computational costs the kernel matrix K ′

in (4) or the respective modification K̂ (by using the KSVM methodology) can be

approximated by the Nyström approximation as detailed in Section 4, including

an eigen-decomposition with linear costs. Subsequently we give a few elementary

details for the CVM algorithm to link it with our problem.

It has been shown e.g. in [41] that the minimum enclosing ball (MEB) can be

approximated with quality ε in (worst case) linear time using an algorithm which

requires only a constant subset of the training set Rj (a region), refereed to as

the core set. Given fixed quality ε, the following algorithm converges in O(1/ε2)

3Our code is matlab based with well tested numerical routines and we make use of a classi-
cal quadratic problem solver, instead of the sequential minimal optimization (SMO) approach.
The SMO approach contains some selection and stopping heuristics which can be problematic
sometimes.

4In case of multiclass problems we rely on a one vs rest approach using the same procedure.
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steps: Here we assume that K̂i,j = 〈Φ(xi),Φ(xk)〉, such that the involved distance

Algorithm 2 MEB - Solver

MEB:
S := {xi, xk} for a pair of largest distance ‖Φ(xi)−Φ(xk)‖2 in Rj and xi chosen
randomly
repeat

solve MEB(S)→ w̃j , R
if exists xl ∈ Rj where ‖Φ(xl)− w̃j‖2 > R2(1 + ε)2 then
S := S ∪ {xl}

end if
until all xl are covered by the R(1 + ε) ball in the feature space
return w̃j , radius R

calculation can be expressed solely through inner products. Accordingly no explicit

feature space is needed. In each step, the MEB problem is solved for a small subset

of constant size only. This is possible by referring to the dual problem which has

the form

minαi≥0
∑
ij αiαjkij −

∑
i αik

2
ii

where
∑
i αi = 1

with data points occurring only as dot products, i.e. kernelization is possible. The

same holds for all distance computations of the approximate MEB problem. Note

that the dual MEB problem provides a solution in terms of the dual variables αi.

By construction, each class is represented by at least two core points. The bias

term of the SVM / CVM solution is obtained by b =
∑
αiyi. The set S obtained

in Algorithm 2 can be potentially shrinked during the iteration by removing those

xi which have an αi close to zero (e.g. 1e−10)5

4. Linear time eigen-decomposition for low rank matrices

The strategy described above is still based on the calculation of an eigen-

decomposition of the kernel matrix K or K ′, with cubic costs for the full eigen-

decomposition. Assuming that the original input kernel has low rank, the Nyström

approximation can be used, which can also be applied to indefinite kernels [34]. The

Nyström approximation for kernel methods (details in [23]) gives:

K̃ = K(N,m)K
−1
(m,m)K(m,N). (5)

5In very rare cases - e.g. if multiple columns and rows in the kernel matrix K̂ are identical
it could happen that the core set optimization problem gets ill-posed. In this case the last valid
(or initial) sub-optimal solution can be used. Similar numerical problems may also happen for a
classical SVM.

10
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Thereby m (columns/rows) of the original kernel matrix have been selected as so

called landmarks. The matrix K(N,m) consists of the m columns of the original

kernel matrix with indices taken from the selected landmarks. K−1(m,m) denotes the

Moore-Penrose pseudo-inverse of the respective landmark matrix K(m,m). Strate-

gies for landmark selection have been widely analyzed in recent times with most

promising results by using leverage scores [42] or by adding pseudo landmarks [43].

To simplify the analysis we select the landmarks randomly and i.i.d. More compli-

cated selection schemes, with potentially additional costs, will likely improve the

results but are not in the main focus of this work. The approximation is exact, if

K(m,m) has the same rank as K. Besides using the standard Nyström approximation

to approximate a kernel matrix as in Eq. (5), a linear time eigenvalue correction

for (potentially indefinite) low rank matrices was proposed in [34].

This low rank eigenvalue decomposition is used in the indefinite Core Vector

Machine approach to approximate the respective kernel matrix. This is necessary

to apply the flipping eigenspectrum correction with linear costs instead of cubic

costs (or slightly less if the number of eigenvalues is restricted) in the KSVM-L

approach.

For a matrix approximated by Eq. (5) it is possible to compute its exact eigen-

value decomposition in linear time6. Subsequently we review the concepts from

[34], in particular an approach to obtain an eigendecomposition of a Nyström based

indefinite matrix.

To compute the eigenvectors and eigenvalues of an indefinite matrix we first

compute the squared form of the Nyström approximated kernel matrix. Let K be

a similarity matrix, for which we can write its decomposition as

K̃ = K(N,m)K
−1
(m,m)K(m,N) = K(N,m)UΛ−1U>K>(N,m) = BB>,

where we defined B = K(N,m)UΛ−1/2 with U and Λ being the eigenvectors and

eigenvalues of K(m,m), respectively. Further it follows for the squared K̃: K̃2 =

BB>BB> = BV AV >B>, where V and A are the eigenvectors and eigenvalues of

B>B, respectively. Apparently the square operation does not change the eigen-

vectors of K but only the eigenvalues. The corresponding eigenequation can be

written as B>Bv = av. Multiplying with B from left we get: BB>︸ ︷︷ ︸
K̃

(Bv)︸ ︷︷ ︸
u

= a (Bv)︸ ︷︷ ︸
u

.

It is clear that A must be the matrix with the eigenvalues of K̃. The matrix

6It is exact, if our low rank assumption holds. In each case the costs are linear.
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Bv is the matrix of the corresponding eigenvectors, which are orthogonal but not

necessary orthonormal. The normalization can be computed from the decompo-

sition: K̃ = B V V >︸ ︷︷ ︸
diag(1)

B> = BV A−1/2AA−1/2V >B> = CAC>, where we defined

C = BV A−1/2 as the matrix of orthonormal eigenvectors of K and diag(1) refers

to a zero matrix with 1 on all diagonal elements. The eigenvalues of K̃ can be

obtained using A = C>K̃C. Using this derivation we can obtain exact eigenvalues

and eigenvectors of an indefinite low rank kernel matrix K, given rank(K) = m and

the landmarks points are independent7.

5. Indefinite CVM

The indefinite CVM can be obtained by carefully combining the former men-

tioned concepts, namely the stabilization problem of the KSVM, the reformulation

of the kernel as a MEB optimization problem for CVM and the Nyström approxi-

mation to ensure low computational costs8. As the problem solver we use a CVM

solver.

The resulting algorithm, that computes the solution of the stabilization problem

by solving the equivalent SVM dual minimization problem within the Core Vector

Machine framework is given by Algorithm 3 and named iCVM (for indefinite CVM).

The kernel matrix is never constructed to a N × N matrix, but we always use a

Algorithm 3 Indefinite Core Vector Machine (iCVM)

Indefinite CVM:
ζ - vector of landmarks (e.g. randomly selected)
approximate K ′ (the 2-class CVM kernel, Eq. (4)) using ζ as shown in Eq (5) to
obtain K̃ ′

[U,D] = NyströmEigenDecomposition(K̃ ′) (see Sec 4)
K̂ = USDU> with S = sign(D) K̂ is not generated as a full matrix - see text
[α] = CoreVectorMachineSolver(K̂, Y, C)
α̃ = USU>α b = Y α̃>

return α̃, b;

Nyström approximated formulation. The values of the flipped kernel, which serves

as an input of the CVM can either again be approximated by another Nyström

approximation or provided more directly by using the matrices U , D of the eigen-

decomposition. The later one is sufficient if the kernel matrix K̂ is not evaluated to

7An implementation of this approach is available at http://techfak.uni-bielefeld.de/

~bmokbel/published_code/Nystroem_toolbox.zip provided from [34].
8With a full kernel the costs exceed O(N2) and it is useless to apply CVM instead of KSVM.
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often which is the case for CVM. Note that the bias parameter is calculated using

α̃.

The Alg. 3 solves9 the complexity issue for KSVM by providing a linear cost

strategy instead of quadratic to cubic complexity of KSVM10. However, the obtained

parameters α̃ are still dense, an issue which is addressed in the next section.

5.1. Sparsification of iCVM

The parameters α̃ are dense as already noticed in [2]. A naive sparsification by

using only α̃i with large absolute magnitude is not possible as can be easily checked

by counter examples. Also classical strategies such as orthogonal matching pursuit

used in [44] do not work well in general. We suggest to restrict the projection

operator and hence the transformation matrix of iCVM to a subset of the original

training data. To get a consistent solution we have to recalculate parts of the

eigen-decomposition as shown in Alg. 4. To obtain the respective subset of the

training data we use the samples which are core vectors11. The number of core

vectors is guaranteed to be very small [39] and hence even for a larger number

of classes the solution remains widely sparse. The suggested approach is given in

Alg. 4. We assume that the original projection function (line f(α̃) = USU>α of

Algorithm 4 Sparsification of iCVM

Sparse iCVM:
Apply iCVM from Alg. 3
ζ - vector of projection points by using the core set points
construct a reduced K ′ using indices ζ as K̄
[U,D] = EigenDecomposition(K̄)
ᾱ = USU>α with S = sign(D) and U restricted to the core set indices
α̃ = 0 α̃ζ = ᾱ - map the transformed alphas to α̃
b = Y α̃>

return α̃, b;

Algorithm 4, detailed in [2]), is smooth and can be potentially restricted to a small

number of construction points with low error. As shown in the experiments this

sparsification works well very often, but we have also datasets where the smoothness

assumption does not hold. In these cases the error rate increases by a significant

amount see e.g. for the swissprot data. A more detailed analysis reveals that this

is typically the case for datasets with a high intrinsic dimensionality or a large

amount of non-vanishing eigenvalues, respectively. Apparently this is a property of

9An implementation of the iCVM and the sparse iCVM is provided at - blind for review -
10KSVM has sub-cubic complexity if only a few dominating eigenvalues are determined.
11A similar strategy for KSVM may be possible but is much more complicated because typically

quite many points are support vectors and special sparse SVM solvers would be necessary.
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the corresponding data set and not a failure of the method. It should be noted that

if the input kernel K was already approximated by a Nyström approximation an out

of sample extension to potentially all training points can be easily done by using the

Nyström kernel expansion [23], hence sparsification of the KSVM or iCVM models

is not very severe in such cases, but helpful to further reduce the computational

costs in the test phase12.

6. Experiments

This part contains a series of experiments that show that our approach leads to a

substantially lower complexity, while keeping similar prediction accuracy compared

to KSVM. We follow the experimental design given in [2]. We also show the best

published result so far summarizing additional comparisons to alternative methods.

Methods that require to modify test data are excluded as also done in [2]. Finally

we compare the experimental complexity of the different solvers. The used data

are explained in Table 1. Additional larger data sets have been added to motivate

our approach in the line of learning with large scale indefinite kernels. Results, re-

ported for SVM on indefinite kernel matrices are obtained by using the SimpleSVM

implementation of [2]. The iCVM implementation is matlab based using the code

fragments mentioned before and by employing a plain quadratic problem solver.

Accordingly we do not have any heuristic stopping criteria for the solve MEB(S)

step in Algorithm 2. We use the probabilistic sampling strategy as suggested in [22]

for the outer loop.

6.1. Experimental setting

For each dataset, we have run 20 times the following procedure: a random

split to produce a training and a testing set, a 5-fold cross validation to tune each

parameter (the number of parameters depending on the method) on the training

set, and the evaluation on the testing set. If N < 1000 we use m = 200 randomly

chosen landmarks and N = m otherwise. If the input data are vectorial data we

used a tanh kernel with parameters [1, 1] to obtain an indefinite kernel.

6.2. Results

Table 2 gives average error rates and standard deviation of KSVM-L and iCVM

and for comparison the best published result found in the literature is reported. We

12Using the Nyström kernel expansion only the proximities to the landmarks have to be calcu-
lated, the proximities to all non-vanishing α̃ can be obtained by a simple matrix operation.
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also report the results obtained by a standard SVM. We observe severe convergence

problems for almost all datasets using a classical SVM13. Only for Aural, Patrol and

Diabetes tanh the SVM training converged, with acceptable error rates on the test

data. In most cases the SVM model has a very high error rate for the given data -

clearly indicating a need for an adapted training procedure or algorithm. We observe

#samples iCVM KSVM-L SVM Others

CatCortex 65 12.31± 6.88? 5.4± 6.3 72.33± 22.82 7.0± 7.1
CatCortex no convergence [27]
Aural 100 12.00± 4.47 12.5± 6.17 13.00± 4.47 12± 6
Aural [29]
balls 3d14 200 0.50± 1.12? 41.37± 6.67 50.00± 11.59 45.70± 1.7
balls 3d no convergence [30]
Protein ksvm 213 0.48± 1.06 0.2± 0.7 54.45± 22.29 0.4± 1.7
Protein ksvm no convergence [27]
Patrol 241 28.63± 6.81? 12.29± 4.56 27.38± 5.15 11.56± 4.54
Patrol [29]
CoilYork 228 36.50± 8.23 33.10± 5.05 77.77± 2.37 33.6± 1.2
CoilYork no convergence [30]
Chicken15 45 446 6.73± 1.38 6.34± 2.45 65.90± 15.09 7± 2.8
Chicken15 45 no convergence [27]
Chicken29 45 446 7.63± 2.45 4.6± 2.5 74.00± 3.04 4.7± 2.7
Chicken29 45 no convergence [27]
Diabetes tanh 768 23.30± 4.03 22.59± 2.30 22.92± 2.38 22.92
Diabetes tanh [19]

Table 2: Prediction errors on the test set - small scale indefinite kernels

that KSVM-L is always more accurate or close to the best published result and that

iCVM is very close to KSVM-L. While we are not expecting any improvements of

iCVM over KSVM-L we sometimes see also better results. This maybe advocated

to the improved representation accuracy of the kernel matrix in iCVM in contrast to

KSVM-L. In [2] for KSVM-L only the top dominating eigenvalues are used to keep

the computational load tractable, while in our approach we can be more flexible

due to the Nyström approximated eigen-decomposition. iCVM performs in general

better for larger datasets because the approximations e.g. the ε-ball approximation

introduces additional errors for small scale data sets. In Table 3 we summarize

results for larger scale data which in parts could not be any longer processed by

KSVM-L (and not at all by KSVM), due to the large number of samples. Significant

differences of iCVM to the best result are indicated by a ? (anova, p < 5%). Again,

the iCVM is similar accurate compared with KSVM-L or alternative results. We

13The same also happens for the larger data sets but due to the SVM convergence problems
with long runtimes we skipped these experiments.
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#samples iCVM KSVM-L Others

Sonatas 1068 13.01± 3.82 15.92± 2.59 11.52± 0.20 [31]
Sonatas (time) 1068 77.92 57.40 -
Delft 1500 3.20± 0.84 11.13± 3.38 1.80± 1.48[17]
Delft (time) 1500 9.44 475.31 -
a1a 1605 20.56± 1.34 17.24± 1.88 17.08 [19]
a1a (time) 1605 6.87 72.63 -
zongker 2000 6.40± 2.11 8.75± 0.68 4.4± 0.6 [27]
zongker (time) 2000 8.82 395.34 -
prodom 2604 0.87± 0.64 0.9± 0.3 1.3± 0.5 [27]
prodom (time) 2604 25.63 2341.80 -
PolydistH57 4000 0.70± 0.19 1.86± 0.50 5.4± 1.3 [27]
PolydistH57 (time) 4000 5.65 9990.30 -
chromo 4200 6.10± 0.63 5.3± 0.3 7.7± 0.4 [27]
chromo (time) 4200 35.68 11563.30 -
Mushrooms 8124 2.54± 0.56 5.08± 0.73 1.09 [32]
Mushrooms (time) 8124 45.19 65225.50 -
swiss-10k 10998k 12.08± 3.47? n.a. 1.41± 0.35 [17]
swiss-10k (time) 10998 73.72 n.a. n.a.
checker-100k 100.000 9.66± 2.32 n.a. n.a.
checker-100k (time) 100.000 112.62 n.a. n.a.
skin 245.057 4.22± 1.11 n.a. n.a.
skin (time) 245.057 258.62 n.a. n.a.
checker 1 Mill 9.38± 2.73 n.a. n.a.
checker (time) 1 Mill 1212.21 n.a. n.a.

Table 3: Prediction errors on the test set - large scale indefinite kernels

also report runtime results. While for the smaller datasets the runtimes of iCVM

and KSVM-L are similar the iCVM is substantially faster with linear instead of

quadratic complexity for larger datasets. In Table 4 we show the results for large

scale data (having at least 1000 points) using iCVM with sparsification. We observe

much smaller models, especially for larger datasets with often comparable prediction

accuracy with respect to the non-sparse model. The runtimes are similar to the non-

sparse case but in general slightly higher due to the extra eigen-decompositions on

a reduce set of the data as shown in Algorithm 4.

6.3. Complexity analysis

The original KSVM has runtime costs (with full eigen-decomposition) of O(N3)

and memory storage O(N2), where N is the number of points. The iCVM involves

the extra Nyström approximation of the kernel matrix to obtainK(N,m) andK−1(m,m),

if not already given. If we have m landmarks, m � N , this gives memory costs of

O(mN) for the first matrix and O(m3) for the second, due to the matrix inversion.

Further a Nyström approximated eigendecomposition has to be done to apply the

eigenspectrum flipping operator. This leads to runtime costs of O(N ×m2). The
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#samples iCVM (sparse) projection pts iCVM (non-sparse)

Sonatas 1068 12.64± 1.71 76.84% 13.01± 3.82
Sonatas (time) 1068 269.31 - 77.92
Delft 1500 16.53± 2.79� 52.48% 3.20± 0.84
Delft (time) 1500 12.35 - 9.44
a1a 1605 39.50± 2.88� 1.25% 20.56± 1.34
a1a (time) 1605 21.53 - 6.87
zongker 2000 29.20± 2.48� 52.81% 6.40± 2.11
zongker (time) 2000 42.19 - 8.82
prodom 2604 2.89± 1.17 26.31% 0.87± 0.64
prodom (time) 2604 35.75 - 25.63
PolydistH57 4000 6.12± 1.38 12.92% 0.70± 0.19
PolydistH57 (time) 4000 31.72 - 5.65
chromo 4200 11.50± 1.17 33.76% 6.10± 0.63
chromo (time) 4200 37.05 - 35.68
Mushrooms 8124 7.84± 2.21 6.46% 2.54± 0.56
Mushrooms (time) 8124 59.89 - 45.19
swiss-10k ≈ 10k 35.90± 2.52� 17.03% 12.08± 3.47
swiss-10k (time) 10998 214.98 - 73.72
checker-100k 100.000 8.54± 2.35 2.26% 9.66± 2.32
checker-100k (time) 100.000 179.02 - 112.62
skin 245.057 9.38± 3.30 0.06% 4.22± 1.11
skin (time) 245.057 234.53 - 258.62
checker 1 Mill 8.94± 0.84 0.24% 9.38± 2.73
checker (time) 1 Mill 1736.21 - 1212.21

Table 4: Prediction errors on the test set for large scale indefinite kernels with a sparse mapping.
The percentage of projection points is calculated using the unique set over core vectors over
all classes in comparison to all training points. Datasets with substantially reduced prediction
accuracy are marked by �.

runtime costs for the sparse iCVM are O(N ×m2) and the memory complexity is

the same as for iCVM. Due to the used Nyström approximation the prior costs only

hold if m� N , which is the case for many datasets as shown in the experiments.

The application of a new point to a KSVM or iCVM model requires the calcu-

lation of kernel similarities to all N training points, for the sparse iCVM this holds

only in the worst case. In general the sparse iCVM provides a simpler out of sample

extension as shown in Table 4, but is data dependent.
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Figure 1: Runtime of the checkerboard data (with an indefinite tanh kernel) with 1000− 100.000
points ( x-axis). The straight line indicates the iCVM and the dotted line the KSVM-L results.
Runtime is plotted on the y-axis at log-scale. One can clearly sees a linear complexity of O(N)
for iCVM and a roughly quadratic complexity for KSVM-L.

The (i)CVM model generation has not more than N iterations or even a constant

number of 59 points, if the probabilistic sampling trick is used [45]. As show in [39]

the classical CVM has runtime costs of O(1/ε2). The evaluation of a kernel function

using the Nyström approximated kernel can be done with cost of O(m2) in contrast

to constant costs if the full kernel is available. Accordingly, If we assume m � N

the overall runtime and memory complexity of iCVM is linear in N , this is two

magnitudes less as for KSVM for reasonable large N and for low rank input kernels.

Figure 1 shows in log scales the training and testing time together depending

on the training set size. The test set size is constant to 1000. The experiment

shows that iCVM is substantially faster than KSVM-L (KSVM using partial eigen-

decomposition).

7. Discussions and Conclusions

As discussed in [2], there is no good reason to enforce positive-definiteness in ker-

nel methods. A very detailed discussion on reasons for using KSVM or now iCVM

is given in [2], explaining why a number of alternatives or pre-processing techniques

are in general inappropriate. Our experimental results show that an appropriate

Krĕin space model is not only at least as effective as other approaches but it does

consistently so, across a number of datasets. Although the original learning meth-

ods in Krĕin spaces can be costly, the presented approach provides an algorithm

with linear complexity if the input kernel is low rank. While not all input kernels
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may be of low rank, empirical experiments showed that this assumption holds often

in practice or can be imposed without severe negative impact on the prediction

accuracy. As is the case for KSVM, the presented approach can be applied without

the need for transformation of test points, which is a desirable property for practical

applications.
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