Enhancing power distribution network operational resilience to extreme wind events

Daniel L. Donaldson, Emma J.S. Ferranti*, Andrew D. Quinn, Dilan Jayaweera, Thomas Peasley, Mark Mercer

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

33 Downloads (Pure)

Abstract

Extreme weather events can cause significant damage to power distribution network infrastructure, often resulting in power outages. Distribution Network Operators (DNOs) are faced with the challenging task of responding to these outages in real time while maintaining a resilient grid. Our paper presents an innovative approach to alert operators about the potential risk associated with upcoming extreme weather through a normalized fragility curve. The uniqueness of the curve is the ability to capture regional differences across a DNO's territory while presenting operators with a means of setting unified risk thresholds. This can support a proactive response and allow the staging of necessary resources to minimize the threat posed by such events. Our approach captures the changes in failure probability associated with differing wind regimes and demonstrates the benefit of sub‐regional meteorological information. The proposed approach is demonstrated for wind events using 20 years of historical fault records from a DNO in the United Kingdom (UK). While its efficacy is demonstrated for windstorms in the UK, the approach could be applied globally to develop normalized fragility curves for other types of seasonal extreme weather events such as snowstorms, hurricanes, or linked hazards such as wildfires. The approach can also facilitate an understanding of how infrastructure may operate under future climate conditions, supporting proactive adaptation.
Original languageEnglish
Article numbere2127
Number of pages14
JournalMeteorological Applications
Volume30
Issue number2
Early online date26 Apr 2023
DOIs
Publication statusE-pub ahead of print - 26 Apr 2023

Keywords

  • RESEARCH ARTICLE
  • RESEARCH ARTICLES
  • climate adaptation
  • infrastructure resilience
  • weather impact

Fingerprint

Dive into the research topics of 'Enhancing power distribution network operational resilience to extreme wind events'. Together they form a unique fingerprint.

Cite this