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1 | INTRODUCTION

The electric power distribution network underpins infra-
structure such as water, communications and transporta-
tion. “As electricity is decarbonised and other sectors
increasingly become electrified, the provision of a reliable
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Abstract

Extreme weather events can cause significant damage to power distribution
network infrastructure, often resulting in power outages. Distribution Network
Operators (DNOs) are faced with the challenging task of responding to these
outages in real time while maintaining a resilient grid. Our paper presents an
innovative approach to alert operators about the potential risk associated with
upcoming extreme weather through a normalized fragility curve. The unique-
ness of the curve is the ability to capture regional differences across a DNO's
territory while presenting operators with a means of setting unified risk
thresholds. This can support a proactive response and allow the staging of nec-
essary resources to minimize the threat posed by such events. Our approach
captures the changes in failure probability associated with differing wind
regimes and demonstrates the benefit of sub-regional meteorological informa-
tion. The proposed approach is demonstrated for wind events using 20 years of
historical fault records from a DNO in the United Kingdom (UK). While its
efficacy is demonstrated for windstorms in the UK, the approach could be
applied globally to develop normalized fragility curves for other types of sea-
sonal extreme weather events such as snowstorms, hurricanes, or linked haz-
ards such as wildfires. The approach can also facilitate an understanding of
how infrastructure may operate under future climate conditions, supporting
proactive adaptation.
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supply becomes ever more important to society and the
economy” (Jaroszweski et al., 2021, p. 87). Shield et al.
(2021) performed an assessment of major power outages
in the United States from 2003 to 2017 and found
weather responsible for 50% of all events, affecting 83% of
customers, with a median restoration cost during a major
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storm of ~$12 million. For DNOs weather-related faults
can comprise a large portion of distribution infrastructure
outages, with one DNO reporting 17% of annual faults
caused by Weather and Environment or Flooding
(on average in the 5 years from 2015) (ENWL, 2021), and
DNO groups in the United Kingdom spending £151m to
improve resilience in 2019-2020 alone (OFGEM, 2020).
Examples of weather events causing disruption of the
electricity distribution network include flooding (Ferranti
et al., 2017) and storms (BEIS, 2021). DNOs are faced
with the challenging task of responding to such events in
near-real time and maintaining grid operation.

In November-December 2021, some areas of the UK
experienced “the equivalent of almost two years' worth of
overhead line faults in just one 12-hour period” (Scottish
and Southern Electricity Networks, 2021) as Storm
Arwen resulted in power outages for around one million
customers, leaving some without power for up to 13 days
(BEIS, 2022a). As a result, the UK Energy Emergencies
Executive Committee (E3C) carried out a review to con-
sider the need to address system resilience (BEIS, 2021).
One key finding of the interim report states that “All
DNOs should review their severe weather escalation
plans to ensure that all relevant factors, including wind
direction, are taken into consideration” (BEIS, 2022a,
p. 12). Giving DNOs more information about the poten-
tial risk posed to the power system by upcoming extreme
weather can support a proactive response and allow the
staging of necessary resources, such as additional mainte-
nance teams or incident management teams, to minimize
the threat posed by such events, thereby enhancing resil-
ience. This paper focuses on the effects of windstorms on
power distribution network resilience and provides
insight enabling transfer learning for other weather
phenomena.

High wind speeds can cause failures within the distri-
bution network in two key ways: (1) Application of force
directly to assets themselves resulting in failure (which
may be worsened by the build-up of ice during a winter
storm), or (2) failure due to flying debris or vegetation
that comes into contact with the assets (BEIS, 2022b).
The failure duration can be momentary or sustained and
thereby requiring repair or further action prior to restora-
tion of service (IEEE, 2012). As the energy sector is decar-
bonized and the dependence of society on reliable
electricity grows (Jaroszweski et al., 2021), the ability to
proactively anticipate these faults due to high wind gusts
will be of increasing global importance. Fragility curves
provide a useful means of achieving this aim by repre-
senting the likelihood of failure of a specific piece of
infrastructure under a range of conditions and have
been applied to electric power systems for a variety of
extreme events including earthquakes (Lagos et al., 2020;

Zareei et al., 2016) and windstorms (Dunn et al., 2018;
Murray & Bell, 2014; Panteli et al., 2017; Wilkinson
etal., 2022).

Jeong and Elnashai (2007) group methods to develop
fragility curves into four categories: (1) Analytical
approaches which seek to use structural simulation
models to reflect the likelihood of failure as used by Pan-
teli et al. (2017) and Zareei et al. (2016); (2) Empirical
approaches which rely on large amounts of historical fail-
ure data such as those used by Murray and Bell (2014)
and Dunn et al. (2018); (3) Judgemental approaches
which form probabilities based on expert opinions; and
(4) Hybrid approaches which seek to combine two or
more approaches in an attempt to overcome the limita-
tions of a single method (“scarcity of observational data,
subjectivity of judgmental data and modeling deficiencies
of analytical procedures”) (Jeong & Elnashai, 2007,
p. 1239). A critical determinant of the most suitable
approach when developing a fragility curve is data avail-
ability. Often sufficient historical information is unavail-
able, requiring the development of analytical approaches
or expert judgement. Experimental methods which rely
on controlled environments to evaluate the failure of
components can also be used to generate data, but are
often impractical due to the expense of testing (Schultz
et al., 2010). In this work, an empirical approach is taken
given the availability of extensive fault records of wind-
related distribution equipment failures.

When designing infrastructure, structural design
codes and standards dictate the minimum wind loading
that each structure should be designed to withstand.
Examples of such standards include BS EN 1991-1-4:2005
“Eurocode 1. Actions on structures—General actions—
Wind actions” (BSI, 2005) in the United Kingdom, and
ASCE/SEI 7-10 in the United States (ASC, 2013). As a
result of design codes and standards, the designed wind
resilience of power system infrastructure can differ based
on the anticipated wind regimes for a given region, caus-
ing the likelihood of failure at a specific wind speed to
differ regionally. A historical example of this can be seen
in damage to buildings and structures in the UK where
“damage starts at about 15 m/s in the south and 17.5 m/s
in the north” (Cook, 1985, p. 51). The likelihood of such
failures is associated with a variety of factors including
the wind regimes in a given area, the surrounding land
cover and the design of the electrical assets themselves.
Each factor plays a critical role in the susceptibility to
faults and is subject to change as the power system is
modernized and as global climate may alter wind regimes
(Maisey et al., 2019; Scott Hosking et al., 2018) and vege-
tation growing seasons (Northern Powergrid, 2010).
Although DNO work is ongoing to develop new fragility
curves (Troshka, 2022), existing power system fragility
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curve approaches often utilize a single curve to reflect a
given service area (Dunn et al, 2018; Murray &
Bell, 2014). While fragility curves can provide a useful
means of informing grid operators of the potential risk of
an upcoming storm, the spatial variance in the land
cover, orography, and asset design means that in addition
to spatial variance in wind speed, there is also a spatial
variance in fragility. Therefore, the application of a singu-
lar fragility curve is likely to be insufficient, overestimat-
ing fragility in some areas while underestimating fragility
in others. Wilkinson et al. (2022) present a regional anal-
ysis to develop fragility curves for specific regions, but
this can potentially create difficulty in creating consistent
thresholds for use and interpretation by grid operators.

The contributions from this work include: (1) A
regional weather-based normalization model to produce
fragility curves using extreme value theory; and (2) An
innovative methodology to use the proposed regional
weather-based normalization model for power distribu-
tion system infrastructure to enable more effective
threshold setting while maintaining interpretability for
grid operators. Based on the findings of this investigation,
this study argues the need for DNOs to calculate regional
fragility models to better monitor regional performance
across their service territory. The findings also reflect sea-
sonal and directional variance in the cumulative amount
of wind-related failures, demonstrating that exposure var-
ies across the season and wind direction, supporting the
recent finding by BEIS (BEIS, 2022a). The significance of
these results is assessed within the context of future cli-
mate projections and the process of climate adaptation
within the UK.

2 | DISTRIBUTION NETWORK
FRAGILITY FUNCTION
METHODOLOGY

A fragility function enables DNOs to look at the upcom-
ing weather forecast and anticipate the number of faults
that might be expected across their service area. A tradi-
tional fragility curve has bounds of zero to one and
reflects the probability that a given asset will fail, given a
specific loading upon that asset (in this case wind speed)
(Schultz et al., 2010). However, a single DNO has a signif-
icant number of infrastructure assets. For example, a
DNO may have hundreds or thousands of kilometers of
overhead distribution lines and associated line equip-
ment. Hence, rather than calculating the probability that
a singular asset fails, the fragility function is defined as
the anticipated number of faults per a given distance of
the overhead distribution line. A distance metric is

chosen to normalize faults rather than an area-based
measure as the focus is on the amount of distribution
infrastructure rather than the size of the region. This
choice of metric also enables comparison with the fragil-
ity functions developed in this work to those developed
by Dunn et al. (2018) and Murray and Bell (2014). How-
ever, Murray focuses on transmission-level faults which
are not directly comparable as transmission infrastruc-
ture is more robust. Furthermore, Dunn et al. (2018)
group nearby faults by windstorms rather than individual
hours, so care should be taken when comparing the mag-
nitude of faults across studies.

2.1 | Standard fragility function

To calculate the fragility function, three pieces of infor-
mation are necessary: (1) Historical wind speed. (2) The
number of faults associated with that wind speed. (3) The
distance of the overhead distribution line exposed to that
particular wind speed. The function which provides the
calculated number of faults at each wind speed for a
given region is as follows:

Ny0) =2, )

where N, is the predicted number of faults at a given
maximum wind gust v; Nt is the number of faults; Ny, is
the number of hours of exposure; d is the desired repre-
sentative distance (in km) for the resulting fault predic-
tion, and L is the total overhead distribution line exposed
(measured in km) exposed to a specific wind speed
(grouped by region) used to normalize the fault rate for
this analysis. As the aim of this methodology is to exam-
ine the relative variability in performance across regions
rather than directly assessing the accuracy of the fragility
curve, a backcasting methodology is not included. How-
ever, when applying a fragility curve to anticipate the
number of faults, assessing the accuracy using an out-of-
sample test period is recommended to anticipate the
performance.

2.2 | Regional weather normalized
fragility function

In order to account for differences in wind profile and
design standards across the sub-regions of a utility, the
wind speed for that region v=v4,Vv5,...,v, is normalized to
fall within the range [0,1] via min-max normalization
(Han et al., 2012):
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Vi — Vmin

V= 2
! Vrnax_vmin, ( )

where v, and v; reflect the normalized and actual wind
gust at the time i; vy, is the minimum wind gust; and
Vmax 1S the maximum wind gust which must be calcu-
lated for each region. One approach would be to take
Vmax as the maximum observed gust for each region.
However, this would introduce an inconsistency in the
scaling due to the unknown probability of the observed
gust occurring and the likelihood that these probabilities
were different in each of the regions. Therefore, an esti-
mate of vy With a known probability of occurrence is
required. A variable is used for the minimum wind gust
to allow the exclusion of wind-related faults below a cer-
tain wind threshold if desired. However, a v,,;,, value of 0
is recommended for most cases to maintain the interpret-
ability of the fragility function.

The value of v,y for a given region can be calculated
by fitting a distribution to the historical observations and
calculating the return period using Extreme Value The-
ory. Extreme values of wind are commonly expressed in
terms of vy which reflect the maximum wind gust that is
exceeded, on average once every T year (Palutikof
et al., 1999). Palutikof et al. (1999) summarize the numer-
ous methods present to do this in the literature. A commonly
used method to estimate the parameters of extreme wind
speeds is Gumbel's method (Cook, 1985; Gumbel, 1958). Lin-
ear regression is often used to identify a least-squares fit
through the observed values yielding the extreme wind
speeds for each return period of interest. However, this
method results in biased estimates, especially at higher wind
speeds (Cook, 1985; Palutikof et al., 1999). To overcome this
deficit, the Lieblein BLUE (best linear unbiased estimators)
method, proposed in (Lieblein, 1974) and detailed in
(Cook, 1985) is used to determine the plotting positions for
this paper. The steps are as follows:

1. Select the annual maximum observed wind gust (x) at
each station from the historical observations and
arrange in ascending fashion Vx € X where N is the
number of years of historical data

X <% L. <XN. (3)

2. For each year, square the maximum annual gust
speed such that

X, =X (4)

3. Copy the values of A(m) and B(m) from the Lieblein
BLUE Lookup table given in (Cook, 1985, pp. 320-323)

4. Check that the BLUE values have been correctly cop-
ied by comparing the sum of A(m) and B(m) with the
checksum values in the lookup table.

5. Calculate the mode U,:

6. Calculate the dispersion 1/a,
N
1/ay = ZB(m)x’(m). (6)
m=1

7. Calculate the Wind Gust for the Return period of
interest

Yo = (er —(1/ay)In <—1n (1 —lle) ))0‘5, (7)

where R is the return period in years.

The approach selected for use in this paper carries the
overall benefit of minimizing the number of decision var-
iables that must be calculated by a grid operator in order
to identify the extreme values. Other methods such as the
r-largest values, method of independent storms (MIS) or
the peak over the threshold (POT) have also been pro-
posed in the literature and could also be used to generate
Vg but require the selection of several additional decision
variables (Palutikof et al., 1999). When using annual
maxima, the minimum length of data that should be used
is 20years. Once the extreme value vg has been calcu-
lated, the return period can be selected for use in devel-
oping the normalized fragility curve. While longer return
periods can be used, the fragility functions will be subject
to significant volatility based on hours with extreme
winds that occur infrequently. The proposed methodol-
ogy addresses this by excluding values exceeding vg from
the creation of the fragility curve. The resulting normal-
ized wind speeds from (2) are then substituted into (1) to
produce normalized fragility functions for each station.

3 | NORTHWEST ENGLAND CASE
STUDY
3.1 | Study area

In Great Britain, the electric distribution network is
maintained by 14 DNOs managed by 6 groups
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FIGURE 1 Location of weather 60° N
stations used in the analysis (shown as
stars) and Great Britain Distribution
Network Operators (DNOs) with
Electricity North West service area 58.5° N
(shown in green). DNO boundaries
obtained from (National Grid Electricity <
System Operator, 2020).
57°N
55.5° N
54° N
52.5°N
51°N
10° W

(OFGEM, 2020) (Figure 1). This analysis focuses on the
service area of one of these DNOs, located in the north-
west of England; Electricity North West (ENWL). North-
west England is exposed to westerly maritime masses that
bring mild, moist air from across the Atlantic Ocean and
is one of the wettest places in the United Kingdom
(UK) (Met Office, 2016). As the region occupies the coast,
it is particularly exposed to strong winds associated with
the passage of deep areas of low pressure from the Atlan-
tic (Met Office, 2016). As a result of these depressions,
wind speeds and associated wind gusts are strongest dur-
ing the winter months (December-February).

In the past decade, this area has experienced several
major storms bringing heavy winds, rainfall and flooding.
Examples include winds on February 12, 2014 (Met
Office, 2014) and Storm Desmond on December 4-5,
2015 (Ferranti et al., 2017). Wind on February 12, 2014
led the Met Office to issue a “Red Warning,” for wind
and left 100,000 homes and businesses without power
(Met Office, 2014). Storm Desmond adversely impacted
regional infrastructure, leading to cascading failures of
power, communications, and transportation networks
(Ferranti et al., 2017) highlighting the inter-dependencies
of critical infrastructure. More recently, Storm Arwen in

7.5°W

5°W 2.5°W 0° 2.5°E 5°E

2021 and Storm Eunice in 2022 have shown the continued
need for resilient distribution infrastructure (BEIS, 2022a).
Three categories of data are used for this analysis: histori-
cal distribution network fault information; historical
weather data; and future climate projections. A summary
showing the DNO service area and weather stations from
which data were collected can be seen in Figure 1, with
DNO boundaries obtained from (National Grid Electricity
System Operator, 2020).

3.2 | Weather data

Meteorological data for the period January 1, 2001
through December 31, 2020 were taken from the MIDAS
UK mean wind data set available from the Centre for
Environmental Data Analysis (NCAS British Atmo-
spheric Data Centre, 2021). Two variables are used: maxi-
mum wind gust and maximum wind gust direction.
Maximum wind gust is used based on the underlying
assumption that wind-related faults are caused by the
highest wind speed in the hour surrounding the fault.
Maximum wind gust direction is also used to explore the
relationship with historical faults. Among the stations
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proximal to the ENWL geographical area of responsibil-
ity, only stations with less than 10% missing data at
hourly granularity were selected to maximize data qual-
ity. The stations were subsequently filtered to exclude sta-
tions above 250 m elevation as there is less power
distribution infrastructure located at a higher elevation,
and therefore wind speed and strength recorded at these
higher elevations may be less representative of that expe-
rienced on the infrastructure network. This resulted in
the removal of the Great Dun Fell (847 m) and Shap
(252 m) stations. Hawarden Airport was also removed as
it was farther south than the majority of faults. This
resulted in seven weather stations for use: Blackpool
Squires Gate, Crosby, Keswick, Rochdale, St. Bees Head,
Walney Island and Warcop Range. Across the 20-year
period, approximately 2% of hourly measurements are
missing. Data is quality controlled by the Met Office, and
therefore measurements with a version of ‘1’ are used
indicating the Met Office's “current best version” (Met
Office, 2020). In addition, for this work, any duplicate
measurement or hourly recording which did not contain
a wind direction and wind gust measurement was
removed. The climate was treated as stationary over the
20-year period evaluated, with the overall variation in
maximum wind gusts over the period detailed in
Section 4.1.

3.3 | Fault history

ENWL provided fault data for the period of July 1, 2001
to March 31, 2020. ENWL has approximately
7000-8000 km of overhead distribution lines (6.6/11 kV)
and associated line equipment in the North West region
of England, which are the focus of this case study. The
service area can be seen in Figure 1. Data was obtained
from ENWL's fault database which is consistent with the
information used to supply information to OFGEM's
National Fault Interruption Reporting Scheme (NAFIRS).
Each record within the data set describes a fault that was
logged in real time by ENWL operators and was subject to
their internal data quality assurance procedures.

Along with the fault, an ENWL cause code records
the best understanding of the fault's origin. In this
study, faults attributed to Wind and Gale (excluding
windborne material) are selected resulting in 3860 faults
after data cleaning. Each fault record also contains the
fault location, a timestamp of when the fault occurred,
the type of equipment that was affected, and the associ-
ated customer minutes lost (CML). An additional identi-
fier is also included that indicates whether the fault was
part of a major event (for example, Storm Desmond
in 2015).
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FIGURE 2 Variation in the maximum wind gust across the

20-year evaluation period.

As the faults are distributed throughout the service
area, each fault was mapped to the nearest corresponding
weather station based on proximity, with consideration
given to their relative position to the central Cumbrian
uplands. Mapping of the faults' geo-location using the OS
National grid to latitude/longitude was performed via the
python OSGridConverter package (Porter, 2017) and dis-
tances were calculated using the geopy package (Karney,
2013). As one of the weather stations (Keswick) is adja-
cent to a mountainous area, faults that may be more
proximal to Keswick, but are on the other side of the
mountainous area (south of 54.5°) are instead assigned to
Walney. As the granularity of available weather data
improves in the future, a more refined mapping can be
achieved. In order to account for the variation in the
amount of electricity infrastructure in the area surround-
ing each of the weather stations, the length of overhead
distribution lines is used as a normalizing factor. The
total distance of the overhead conductor is first grouped
by postcode and then the centroid of each postcode is
mapped to the closest weather station.

4 | ANALYSIS

The methodology was implemented in python using:
numpy (Harris, 2020), pandas (McKinney, 2010) and geo-
pandas (Jordahl, 2021) packages for data processing;
geopy (Karney, 2013), OSGridConverter (Porter,
2017) and shapely (Gillies, 2021) packages for geospatial
analysis; matplotlib (Hunter, 2007), seaborn (Waskom,
2021) and cartopy (Elson, 2020) packages for visualiza-
tion; and scipy (Virtanen, 2020) and statsmodels (Sea-
bold, 2010) packages for statistical calculations.
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FIGURE 3 Regional differences in
maximum wind gusts across stations in 30
the study region. Colours used to

indicate the three observed groups

(coastal-blue, hilly-gold, inland-green). 0

40

Maximum Gust Speed (kn)
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4.1 | Historical weather evaluation

Wind data for the region is compared to assess whether
there is an observed change in maximum wind gusts over
the 20-year study period (Figure 2). When inspecting the
change of wind gust from 1 year to the next, a linear
trend (fit using ordinary least squares) revealed an
increase of 0.05 kn per year in the annual median value
of maximum wind gust over the study period. As the
magnitude of the annual change is relatively small and
the regression coefficient was not significant (p = 0.109),
the historical maximum wind gust is treated as stationary
for the purposes of this study.

Following the examination of the annual behaviour
across the study area, the historical performance at each
weather station was examined to identify the presence of
regional variation. Examination of the weather station
historical data reveals distinct differences between
Coastal (St Bees Head, Walney, Blackpool, and Crosby),
and Inland (Rochdale and Keswick) stations. The median
maximum wind gust for each of these groups is 16.25 and
10.5 kn respectively. This differential of nearly 6 kn indi-
cates clear geographic differences in wind profile. The
Warcop station (hilly area) fell between these two groups
with a median value of 14 kn but has high extreme values
(Figure 3).

The last step of the historical weather evaluation was
to calculate v, for each station to use in the normaliza-
tion process. To avoid data sparsity in the historical
measurements, a 5-year return period is used and the
Vmin value for wind speed is set to 0. The process given in
(3-7) is used to produce estimates of the magnitude of
wind speed with a 5-year return interval for each of the
seven weather stations. Table 1 shows the values of v pax
along with the coefficients. The resulting values of v,y
indicate the significant disparity in maximum wind gust

1
®

@ war }—

® e (| [ |
1

19}
g
() ENWL Territory

@ «ss

with a 24-kn difference between the two extremes
(St. Bees Head and Rochdale). This evidences the sub-
stantial regional differences in wind loading.

4.2 | Sub-regional fragility

To produce the fragility curve for each station, (1) is used
in increments of 5 kn for each weather station area in the
DNO territory. The maximum wind gusts for each station
are grouped into bins of 5 kn (approximately 2.6 m/s) to
minimize the impact of data sparsity which is more pro-
nounced at higher wind gusts. This indicates how
Figure 4 depicts these results. At low wind gusts all
regions perform similarly, but from 35 kn and upwards,
the points diverge. Based on historical data, faults are
more likely in Rochdale at lower wind gusts, than in any
other region, whereas failures are least likely in the War-
cop Range region. While a single set of risk thresholds
based on wind speed could be applied throughout the ter-
ritory, Figure 4 indicates that using a single typical value
would overestimate risk in some areas, while underesti-
mating risk in others.

4.3 | Sub-regional weather normalized
fragility

To enable setting of consistent risk thresholds across an
entire DNO area and compare vulnerability between the
subregions, the fault rates can be normalized to the
expected windspeeds seen in each region. Two design
variables must be selected in order to produce the nor-
malized fragility curve: the return period and bin size. As
described above, the return period (v7) was selected to be
Syears for this case study. However, this value could be
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Station name Abbreviation Uy 1/ay Maximum wind gust (kn) TABLE1 Estimates of maximum
annual wind gusts for each regional

St Bees Head ST 3948 709 71 station (1-in-5 year return period).
Warcop Range WAR 3398 672 66

Crosby CRO 3407 612 66

Blackpool Squires Gate ~ BLA 3199 600 64

Walney Island WAL 3167 468 62

Keswick KES 2627 521 58

Rochdale ROC 1639 368 47
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FIGURE 4 Historical faults for each sub-region demonstrating
geospatial dispersion in risk.

ST BEES HEAD NO 2

3.5 ® KESWICK
WARCOP RANGE

®  WALNEY ISLAND

BLACKPOOL: SQUIRES GATE

ROCHDALE

CROSBY

- > b 2
[ o 3 o
LN

—
(=]
°

Mean Failures per Hour per 1000 km
of Overhead Distribution Line

2

n
®
.

o
o
»

20 40 60 80 100
% of Regional Maximum Wind Gust (1-in-5)

FIGURE 5
the median value shown as a black dashed line.

Normalized fragility curves for each region with

varied to match the desired design criteria for a given set
of assets. The median maximum wind gust across the sta-
tions with this return period was 64 kn. To approximate
the same bin size used for Figure 4, the bin size was set
to 7.5% as 5/64 is approximately 7.5%. The size of the bin

should be scaled accordingly to ensure a sufficient sample
size based on the number of stations being used. For this
case study, each bin plotted contained 41 faults on aver-
age. The results can be seen in Figure 5. It can be
observed that the risk of wind-related faults remains min-
imal below 60% of the regional maximum gust (similar to
the regional fragility curves in Figure 4). This corre-
sponds to nominal values ranging from 28 to 43 kn. How-
ever, even at higher windspeeds, there is much closer
alignment across stations in the normalized fragility
curves. Therefore, the normalized curves could be used to
identify risk posed to the system in a spatially consistent
fashion. While the variance between the regions is
reduced in the normalized fragility curves, some differ-
ence remains. An example of this is the curve for Crosby,
which is significantly higher than the other regions, or
that of Warcop, which is lower than others. One potential
reason for this could be local variance in observed wind
speed. Although Crosby is closest in distance to many of
the faults, it is located outside of the DNO area and is
west of the observed faults. Other factors may also be
involved that are not captured in the proposed normal-
ized fragility curve and will be discussed further in
Section 5. Dispersion is greatest in the final bin with
wind speeds ranging from 97.5 to 100% of vy and is
excluded from the figure. The reason for this is that the
probabilities in this bin are only based on a few hours
and are much less robust. This further emphasizes the

trade-offs between fragility curve granularity and
bin size.
4.4 | Variance in extreme winds across

seasons and regime

The report regarding the recent behaviour of UK distribu-
tion infrastructure during Storm Arwen highlights the
need for DNOs to consider other variables such as wind
direction when anticipating the risk posed by extreme
winds to the network (BEIS, 2022a). As the season and



DONALDSON ET AL.

PR STy | 9of14

1.0 —— Overall )
B —— Cat.1(Nov. to Mar. NNEE) —— R

Cat. 11 (Nov. to Mar. Other)
—— Cat. III (Apr. to Oct. NNEE)
— Cat. IV (Apr. to Oct. Other)

0.8

0.6

Proportion of Faults

0.2

& 0 ‘ 20 40 60 80

Maximum Gust Speed (kn)

FIGURE 6 Maximum Wind Gust Associated with Faults over
Study Period (N = 381, 2504, 184, 791).

wind direction are used to inform the current qualitative
risk metrics employed by the DNO for this area, it is
important to assess whether there is a change in
maximum wind gust associated with faults across the cat-
egories used by the DNO. The four categories used for
this work are Cat. I: Faults occurring November through
March from the N/NE/E; Cat. II: Faults occurring
November through March from other directions; Cat. III:
Faults occurring April through October from the N/NE/
E; and Cat. IV: Faults occurring April through October
from other directions. A breakdown of the cumulative
distribution function for each of the four categories can
be seen in Figure 6. The figure shows that historically,
faults in November through April (Cat. I and II) occur at
higher wind speeds. Furthermore, across the year, faults
from an N, NE, or E direction (NNEE) occur at lower
wind speeds than those from other directions. There is
also a disparity in the number of faults across categories
with Cat. II containing more than 50% of faults. There-
fore, the overall system wind speed profile for faults is
most similar to this category. Because of the disparity in
historical wind speeds associated with faults across these
four categories, the use of a single Empirical Cumulative
Distribution Function (ECDF) would reflect faults for
Cat. II, but greatly overestimate the wind speeds associ-
ated with faults in other categories, most notably those in
Cat. III.

Considerable variation across the season and wind
direction can be observed. Three threshold quantiles are
used to compare the historical wind gust associated with
faults in each category (80%, 90%, and 95%). Comparing
faults in Cat. I and II, the threshold points for faults from
the N, NE or E are at 38, 43, and 50 kn respectively,
whereas the thresholds increase to 48, 54, and 60 kn for

faults from other wind directions. This demonstrates
there is a clear difference in faults associated with differ-
ent wind regimes. Comparing the fault-inducing wind
speeds across seasons also exhibits a marked difference
with faults from November to March occurring at higher
wind speeds when holding direction constant. Particu-
larly more faults have occurred at lower wind speeds
from April to October when the wind is from the N/NE/
E and operators should plan to stand up emergency
response actions at lower wind speeds during this period.
Therefore, accounting for the changing sensitivity across
seasons can be a beneficial means to further enhance the
response to wind risk. These results indicate that there
may be a further benefit for operators to differentiate the
risk in a subregion by season and wind direction. How-
ever, even at a DNO level, there are a more limited num-
ber of observed faults in some periods such as Category
III, which contained only 184 faults. As fragility curves
are dependent on a sufficient quantity of historical data
to produce robust outcomes, trade-offs between data
quality and quantity must be balanced.

4.5 | Study limitations

One of the most significant challenges when assessing
fragility functions is the geospatial and temporal align-
ment of multivariate data. For example, the weather data
is from seven stations throughout the DNO, but given the
complex orography of the region, the wind speeds may
vary significantly even a short distance apart. Therefore,
more granular wind speed measurements could refine
the accuracy of fragility functions. One way to remedy
this could be through the installation of additional wind
speed monitoring stations on or near pylons throughout
the territory. Another example of challenges in alignment
is the mapping of electrical assets to weather station
zones. Further granularity of feeder-level infrastructure
could improve the precision of the normalization.
Another challenge is the amount of historical fault infor-
mation in each bin used to develop the fragility curves.
As the focus area becomes more granular, the number of
faults decreases, leading to less robustness in the fragility
function. When developing regional curves, consider-
ation should be given to the sample size available for
each curve. Grouping data in bins of 5kn partially
addresses this challenge, but at the tail values of wind
speeds, only a few faults were recorded leading to the
change in direction at extreme wind speeds for some sta-
tions. This effect is mitigated in the normalized fragility
curve which does not include measurements beyond the
1-in-5-year maximum annual wind speed for each sta-
tion. Lastly, it should be noted that the fragility curves
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were calculated using 20 years of data and assumed sta-
tionary climate over this period. This assumption can be
considered valid given the lack of a clear trend in
maximum gust speed shown in Figure 2. Future enhance-
ments to the accuracy of these curves may be provided
through the incorporation of additional variables such as
the age of assets, structural properties such as height
tower type, material, etc., and surrounding land use and
cover. With access to other variables, normalization could
be conducted to account for the influence of these vari-
ables as well.

5 | IMPLICATIONS
5.1 | Operational response to severe
weather

The DNO for the study area, ENWL currently employs a
risk categorization to inform their operational response
to severe weather events. There are four levels of risk
(green, yellow, amber, red) and each elicits a different
response to proactively prepare for outage events. The
level of risk is a function of a wind gust, direction and
season. Winds from the N, NE and E, are generally asso-
ciated with failures at lower average wind speeds. From
April to October, failures tend to occur at lower average
wind speeds than during the rest of the year. Accord-
ingly, the DNO applies the risk levels at different wind
speeds for the four categories (Cat. I, II, III and IV)
defined in Section 4.4. The risk levels and categories are
derived and refined from learning from DNO experience
of managing the network. This is in alignment with the
finding from BEIS that DNOs should consider wind
direction and speed in the setting of their alerts and prep-
aration levels (BEIS, 2022b). By refining, the level of risk
associated with different wind speeds across sub-regions
the DNO may be able to further refine its operational
preparation to manage the risk. This ensures a robust
and effective use of resources across the business.

The value in continuous review of risk thresholds is the
ability to better anticipate the damage caused by wind-
storms, allowing more accurate preparation of resources to
improve overall system resilience. The DNO's operational
response to risk initially involves four distinct parts of the
business: control hub, local area operations, customer
engagement and communications teams:

o Control hub: In the control hub, for a low-risk event,
extra planners and dispatchers are mobilized to enable
a simultaneous response to a growing number of inci-
dents on the network. In more severe cases, a full inci-
dent management team (IMT) is mobilized along with

all available control engineers and outage technicians
along with extra management support.

« Local area operations: In the local area, a similar struc-
ture of mobilization occurs. For low-risk warnings, an
extra vegetation management team or line team may
be mobilized along with placing extra crews on
standby. For more severe events, this ramps up to
include engineering support, line crews, vegetation
teams and senior authorized engineers.

« Customer engagement: Customer engagement is also
increased with corresponding increases in risk. At low
levels, this may include placing customer service teams
on standby, whereas for high risk this may include
24-h teams with all available inbound call takers. The
customer engagement teams manage communications
to customers through the website but also reach out to
priority registered and vulnerable customers to offer
proactive advice and support.

« Communications: The communications team actively
manages and monitors all press queries and interest-
pushing messages as appropriate to reassure cus-
tomers, and at times of severe events, supports
messages on social media and in news coverage. Social
media is becoming increasingly essential to effective
outage communication with its use by a variety of
infrastructure operators.

As the scale of predicted events becomes increasingly
severe so does the level and involvement of preparation
across the business across all departments, contractors
and levels of leadership.

5.2 | Implications for power DNOs

This study reveals key findings for ENWL, DNOs, and
the sector more broadly. Firstly, the analysis of meteoro-
logical and fault data shows sub-regional differences in
wind profile, and the relationship between wind strength
and faults per 1000 km line length. Coastal regions expe-
rience higher maximum and average wind gusts
(Figure 3) and have different relationships between line
fault rate and maximum gust speed. For example, the
inland region served by the weather station at Rochdale
experiences higher fault rates at lower gust speeds. The
reasons for this geospatial dispersion in risk are unclear;
it may be related to historical variances in design stan-
dards or ‘asset acclimatization’ (i.e., assets located in
areas of higher average wind speed are accustomed to a
higher average wind speed; if not they would have
already failed). Nonetheless, it emphasizes the benefit of
considering a localized response to wind risk manage-
ment that takes into account localized risk, and the
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importance of using sub-regional weather data to inform
operational risk management and asset management.
Secondly, this study demonstrates that there are seasonal
and directional components to the wind risk profile
(Figure 6). It, therefore, provides a robust, quantitative
underpinning for the current risk categories employed by
the regional DNO, which are derived from their tacit
experience of managing the network. Fragility curves
provide a means of predicting the level of faults on a sys-
tem for a particular wind speed and can provide a further
numerical basis to derive different risk levels (e.g., green,
amber, red) to support operational response. The analysis
could be expanded to include other variables that ENWL
uses to predict the impact on operational performance
such as temperature or tree cover.

This analysis provides detailed evidence of the impact of
wind on assets and outlines a robust methodological
approach that may be applied to other weather impacts,
such as extreme temperatures. Understanding the impact of
current weather is a fundamental part of climate adaptation
(Quinn et al.,, 2018). Moreover, under the 2008 Climate
Change Act (2008), DNOs along with other infrastructure
operators and organizations must report on the current and
future impact of weather on their organization and their pro-
posals to adapt to climate change under the Adaptation
Reporting Power. The approach given here feeds into this
process. Additionally, fragility curves could be linked with
climate change projections to generate risk profiles for wind
in future climate patterns (e.g., those found in Dobney et al.
(2010)). For other DNOs, this study outlines an approach
they may use to evaluate the risk that wind (or other vari-
ables) poses to their networks, and/or undertake a quantita-
tive evaluation of their current risk management approach
as the variance across sub-regions will differ from one DNO
to the next. Having a clear understanding of the current
impact of weather on infrastructure assets is imperative for
effective operations as well as longer-term planning for cli-
mate resilience or vegetation management. Finally, this pro-
ject shows the value of academic-practitioner knowledge
exchange for the broader benefit of society and the economy.
This project was co-created with ENWL to explore an opera-
tional issue within the context of climate change. Regular
communications ensured the project outputs and outcomes
remained fit for purpose. Effective knowledge exchange and
project co-creation and co-implementation can ensure that
publicly funded research benefits civil society.

5.3 | Implications in the wider context of
climate change

Global mean temperature increase is changing regional
climates, with a consequence for infrastructure assets

(Jaroszweski et al., 2021). For example, extreme weather
may increase the frequency of weather impacts on a net-
work, and/or may require assets to be designed for a dif-
ferent climate (e.g., with higher temperature extremes),
and/or make some assets no longer viable (e.g., coastal
infrastructure regularly inundated as a consequence of
rising sea level) (Ranger et al., 2013). Within the UK,
there are observed and projected trends towards milder,
wetter winters and warmer summers, and hotter, drier
summers, alongside an increase in the intensity of short-
duration rainfall events (Met Office, 2019). However, for
wind, the observational record shows no changes in
storminess as measured by maximum gust speed (Fung
et al., 2019). There is also limited observed change in
maximum gust strength in the ENWL region during the
20-year period of this study (as shown in Figure 2).
Global climate models from the UK Met Office (PPE-15)
show an increase in near-surface wind speed during win-
ter (December, January, February) from 1900 to 2100
(as compared from 1981 to 2000 averaging period); how-
ever, this increase is small compared with interannual
variability and is not replicated by other climate models
from the CMIP5 model intercomparison project (Fung
et al., 2019). This increase in wind speed apparent within
the PPE-15 model ensemble is linked to an increase in
westerly weather types that bring westerly winds and
mild wet conditions over the UK within the Met Office;
again, this is not replicated in the CMIP5 model average
(Maisey et al., 2019). This difference in projections of
future wind strength is part of broader uncertainty sur-
rounding the response of the North Atlantic jet stream
strength and location (i.e., systematic changes in storm
tracks) to a changing climate. Some models show the jet
stream to be increasing in strength, while others do not;
there is also no climate model consensus on the location
of any changes (Shepherd, 2014, 2019).

It follows that in the future, the ENWL region may
experience an increase in the frequency of weather events
from the west, and may experience an increase in the
mean wind speed affecting their assets but any change
that may occur is small compared to interannual variabil-
ity. For the DNO and infrastructure operators or orga-
nizers more broadly, this uncertainty surrounding future
climate change projections has the potential to lead to
inaction or maladaptation (Ranger et al., 2013). Instead,
this uncertainty should be incorporated within the itera-
tive process of climate change adaptation that should be
part of business as usual (Quinn et al.,, 2018). DNOs
should continue to record the impact of current weather
on their assets, and periodically review information on
climate change projections produced by organizations
such as the Met Office. Asset management should take
into account current and future weather impacts, and
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design codes and standards may need to be modified to
account for a changing climate. International Organiza-
tion for Standardization standard ISO14090 Adaptation to
climate change specifies principles, requirements and
guidelines for organizations to adapt to climate change
(ISO-14090:2019(en), 2019). As infrastructure is made
more resilient in some areas, this may further increase
the disparity in the regional fault risk, prompting the
need for further evaluations of effective risk thresholds.

6 | CONCLUSIONS

This paper has combined historical fault data with mete-
orological information to understand the impact of wind
on the infrastructure assets of a DNO located in north-
west England. The analysis shows spatial variation in
wind regimes and fault rates, within the broader influ-
ence that seasons and wind direction have on fault rate.
The findings were discussed within the context of future
projections of wind speed and strength under a changing
climate, and within the policy context within the UK,
which requires DNOs to understand and report on the
impact of weather on their organization, and their efforts
towards climate resilience.

The paper, therefore, has conceptual and practical
value. Conceptually, it advances the use of fragility
curves, by presenting normalized fragility curves that can
facilitate a more ready comparison of power system infra-
structure resilience across regions with varying climates.
For industry, it describes an approach that any DNO may
apply to understand the impact of weather on their sys-
tems, which can be used to inform operational response,
evaluate existing operational response or provide the evi-
dence base for long-term strategic decisions on asset
management or climate adaptation. The electricity distri-
bution network underpins other infrastructure networks
including transport and ICT, and ensuring continuity of
service is of national and international importance, now
and in the future.

Looking forwards, future work should expand the
analysis to examine the factors that may be contributing
to spatial variation in performance, such as asset condi-
tion and design, maintenance regime, or land cover. Tree
location and canopy size are particularly interesting
when considering seasonal effects, and longer-term cli-
mate change, which may change tree species diversity
and growing seasons; ultimately, a consequence of DNO
vegetation management plans. Technological innovation
may provide higher-resolution meteorological data or
greater information on asset conditions. Therefore,
methods to determine the fragility and risk of power dis-
tribution networks should be regularly examined.
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