Abstract
Rotating fans are the prevalent forced cooling method for heat generating equipment and buildings. As the concentration of atmospheric pollutants has increased, the accumulation of microscale and nanoscale particles on surfaces due to advection-diffusion has led to adverse mechanical, chemical and electrical effects that increase cooling demands and reduce the reliability of electronic equipment. Here, we uncover the mechanisms leading to enhanced deposition of particle matter (PM 2.5) on surfaces due to turbulent axial fan flows operating at Reynolds numbers, (Formula presented.) Qualitative observations of long-term particle deposition from the field were combined with in situ particle image velocimetry on a telecommunications base station, revealing the dominant role of impingement velocity and angle. Near-wall momentum transport for (Formula presented.) were explored using a quadrant analysis to uncover the contributions of turbulent events that promote particle deposition through turbulent diffusion and eddy impaction. By decomposing these events, the local transport behavior of fine particles from the bulk flow to the surface has been categorized. The transition from deposition to clean surfaces was accompanied by a decrease in shear velocity, turbulent stresses, and particle sweep motions with lower flux in the wall-normal direction. Finally, using these insights, selective filtering of coarse particles was found to promote the conditions that enhance the deposition of fine particle matter.
Original language | English |
---|---|
Pages (from-to) | 486-500 |
Number of pages | 15 |
Journal | Aerosol Science and Technology |
Volume | 55 |
Issue number | 4 |
Early online date | 20 Jan 2021 |
DOIs | |
Publication status | Published - 8 Feb 2021 |
Keywords
- Environmental Chemistry
- General Materials Science
- Pollution