Classifying shape of internal pores within AlSi10Mg alloy manufactured by laser powder bed fusion using 3D X-ray micro computed tomography: Influence of processing parameters and heat treatment

Research output: Contribution to journalArticlepeer-review


Colleges, School and Institutes


Internal porosity of metallic parts manufactured by laser powder bed fusion (LPBF) is governed by processing parameters including laser power, scanning speed, scan spacing and layer thickness. To fully understand the influence of processing parameters it is important to categorise the shape of process defects (pores) in 3D beyond the degree of sphericity alone. In the present paper, AlSi10Mg samples were manufactured using 30 unique LPBF parameter combinations and analysed using high resolution X-ray micro computed tomography (XμCT). The shapes of individual pores are classified and studied using an approach based on the similarity of 3D pore descriptors with simplified artificial objects. Porosity within high as-fabricated densification builds can be reduced to virtually negligible by hot isostatic pressing (HIPping), which was found to fully or partially close (flatten) pores. Subsequent T6 treatment causes pores to reopen and resemble their original shape. The effects of treatment are sensitive to pore size.


Original languageEnglish
Article number110225
Number of pages14
JournalMaterials Characterization
Early online date28 Feb 2020
Publication statusPublished - May 2020


  • laser powder bed fusion, selective laser melting, X-ray micro computed tomography, porosity classification, hot isostatic pressing, T6 heat treatment