Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels

Research output: Contribution to journalArticle

Authors

Colleges, School and Institutes

Abstract

A Liquefied Petroleum Gas (LPG)-diesel dual fuelled combustion experimental study was carried out to understand the impact of the properties of the direct injection diesel fuels, such as rapeseed methyl ester (RME) and gas-to-liquid (GTL), on combustion characteristics, engine performance and emissions. The experimental results showed that up to 60% of liquid fuel replacement by LPG was reached while keeping engine combustion variability within the acceptable range and obtaining clear benefits in the soot-NOx trade-off. However, the amount of LPG was limited by adverse effects in engine thermal efficiency, HC and CO emissions. LPG–RME showed a good alternative to LPG-diesel dual fuelling, as better engine combustion variability, HC, CO and soot behaviour was obtained when compared to the other liquid fuels, mainly due to its fuel oxygen content. On the other hand, NOx emissions were the highest, but these can be balanced by the application of EGR. LPG–GTL dual fuelling resulted in the highest NOx emissions benefit over a wide range of engine operating conditions. The high cetane number and the absence of aromatic of GTL are the main parameters for the more favourable soot-NOx trade-off compared to LPG–ULSD (ultra low sulphur diesel) dual fuelling.

Details

Original languageEnglish
Pages (from-to)620-629
JournalEnergy
Volume47
Issue number1
Early online date13 Oct 2012
Publication statusPublished - 1 Nov 2012

Keywords

  • LPG, Dual fuel, RME, GTL, Emissions