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a b s t r a c t

A Liquefied Petroleum Gas (LPG)-diesel dual fuelled combustion experimental study was carried out to
understand the impact of the properties of the direct injection diesel fuels, such as rapeseed methyl ester
(RME) and gas-to-liquid (GTL), on combustion characteristics, engine performance and emissions. The
experimental results showed that up to 60% of liquid fuel replacement by LPG was reached while keeping
engine combustion variability within the acceptable range and obtaining clear benefits in the soot-NOx

trade-off. However, the amount of LPG was limited by adverse effects in engine thermal efficiency, HC
and CO emissions. LPGeRME showed a good alternative to LPG-diesel dual fuelling, as better engine
combustion variability, HC, CO and soot behaviour was obtained when compared to the other liquid fuels,
mainly due to its fuel oxygen content. On the other hand, NOx emissions were the highest, but these can
be balanced by the application of EGR. LPGeGTL dual fuelling resulted in the highest NOx

emissions benefit over a wide range of engine operating conditions. The high cetane number and the
absence of aromatic of GTL are the main parameters for the more favourable soot-NOx trade-off
compared to LPGeULSD (ultra low sulphur diesel) dual fuelling.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Liquefied petroleum gas (LPG) is considered as a promising
alternative fuel and has been widely used in transportation due to
its environmental and economic benefits [1e3]. Apart from being
a lower pollutant, LPG is also desirable as it receives tax concession
in Europe [1,4].

The high octane number of LPG makes it suitable for spark
ignition engines. In contrast, the low cetane number (CN) of LPG
makes it difficult to be used in large proportions in compression
ignition engines, mainly due to high cyclic variation [5]. However,
the addition of cetane enhancer can improve the performance of
LPG fuelled diesel engine operation [5e7].

It has been reported that with the use of in-cylinder injected
LPG, improvements in smoke and nitrogen oxides (NOx) emissions
are evident and in some cases carbon monoxide (CO) emission can
be minimised, specifically in high engine load [8]. The presence of
the LPG spray combined with diesel fuel into the cylinder promotes
diesel atomisation, increasing the velocity of diffusion combustion,
which in turn diminishes soot formation [9].
fax: þ44 (0)121 4143958.
).
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In dual fuel engine operation, the combustion characteristics
are affected by both the pilot diesel fuel as ignition source and
the primary premixed fuel. For instance, the differences in
chemical and physical properties of the pilot fuel directly affect
the emissions and performance of the engine mode [7,10,11].
Therefore, the high CN of GTL is expected to improve the engine
performance and emissions of LPG-liquid fuel engine operation
[12]. The use of high CN fuels could improve the auto-ignition
characteristics and extend stable engine operation under LPG-
diesel dual fuelling [5].

Similarly, the combustion of biodiesel fuel like rapeseed methyl
ester (RME) shows emissions improvements mainly in terms of HC,
CO, and soot. The oxygen content of RME (about 10.8%wt) improves
fuel oxidation, inhibiting the formation of carbonaceous pollutant
species and enhancing their oxidation [13e15]. However, changes
in the injection and combustion patterns due to high biodiesel’s
bulk modulus and oxygen content have been reported which tend
to raise NOx emissions [10,11,13]. However, it is expected that this
drawback can be minimised by the LPG combustion characteristics.

The objective of this work is to investigate the influence of three
in-cylinder injected diesel fuels, ULSD, RME and GTL on the
combustion characteristics and emission of the LPG-diesel dual
fuelled engine. The influence of the exhaust gas recirculation (EGR)
was also investigated.
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Table 1
Experimental engine specifications.

Engine specification Data

Engine cycle 4-stroke DI
Number of cylinders 1
Bore/stroke 98.4 mm/101.6 mm
Connecting rod length 165 mm
Displacement volume 773 cm3

Compression ratio 15.5:1
Rated power (kW) 8.6 @ 2500 rpm
Peak torque (Nm) 39.2 @ 1800 rpm
Injection system Three hole direct injection
Engine piston Bowl-in-piston

Table 2
Liquid fuel properties.

Property Method ULSD RME GTL

Cetane number ASTM D613 53.9 54.7 80
Density at 15 �C (kg/m3) ASTM D4052 827.1 883.7 784.6
Viscosity at 40 �C (cSt) ASTM D455 2.467 4.478 3.497
50% distillation (�C) ASTM D86 264 335 295.2
90% distillation (�C) ASTM D86 329 342 342.1
LCV (MJ/kg) 42.7 37.4 43.9
Sulphur (mg/kg) ASTM D2622 46 5 <10
Aromatics (%wt) 24.4 w0 0.3
O (%wt) w0 10.8 w0
C (%wt) 86.5 77.2 85
H (%wt) 13.5 12.0 15
H/C ratio (molar) 1.88 1.85 2.10

H.S. Tira et al. / Energy 47 (2012) 620e629 621
2. Experimental setup

2.1. Engine

Tests were carried out using a naturally aspirated, single
cylinder and mechanical direct injection compression ignition
diesel engine. An electric dynamometer with a motor and load cell
was coupled to the engine and used to motor and load the engine. A
detailed engine specification is shown in Table 1 and the schematic
diagram of the experimental setup is shown in Fig. 1.
2.2. Fuels

Three liquid fuels were used: ULSD, RME and GTL which were
provided by Shell Global Solutions UK. The fuel properties are given
in Table 2. LPG used in this experiment was provided in a gas
cylinder. Propane and butane is generally the main component of
LPG, but its actual composition varies widely among countries and
depends on season and cost. In the UK, the quality specifications for
LPG conformed to BS 4250 which is specified for commercial
propane and butane. In this work the LPG used contains 100%
propane, and its properties are given in Table 3.
2.3. Combustion and emissions facilities

Emissions measurements such as carbon dioxide, carbon
monoxide, nitrogen monoxide, nitrogen oxides and gaseous
Fig. 1. Schematic diagram o
hydrocarbons were carried out using an HORIBA 7100DEGR emis-
sion analyser. Particulate matter (PM) was evaluated using an
HORIBA MEXA 1230 PM analyser. In this equipment soot was
measured with a diffusion-charging (DC) detector and two flame
ionisation detectors (FID) were used for soluble organic material
(SOM) measurement. The emissions measurements were carried
out three times and an average reading was taken.

The in-cylinder pressure was recorded by using a Kistler 6125B
pressure transducer (1% measurement accuracy) mounted flush at
the cylinder head and connected via a Kistler 5011 charge ampli-
fier to a National Instruments data acquisition board. A digital
shaft encoder was used to measure the crankshaft position. 200
consecutive engine cycles were performed in order to analyse the
in-cylinder pressure and rate of heat release. Data acquisition and
combustion analysis were carried out using the in-house developed
LabVIEW-based software. Output from the analysis of consecutive
engine cycles included peak in-cylinder pressure, indicated mean
effective pressure (IMEP), coefficient of variation (% COV) of IMEP
and peak in-cylinder pressure, rate of heat release (ROHR) and
other standard combustion parameters. The COVs are used as
criteria for combustion stability.

2.4. Engine operating conditions

A modification was made on the intake manifold to allow LPG
and fresh air mixing, while the liquid fuel was injected directly in
f experimental setup.



Table 3
Propane properties.

Property Propane

Relative density (15.6 �C, 1 atm) 1.5
Boiling point (�C) �42.1
Latent heat of vaporisation at 15.6 �C (kJ/kg) 358.2
Flammability range (%vol. in air) 2.2e9.5
Auto-ignition temperature (�C) 470
Sulphur (%wt) 0e0.02
LCV (MJ/kg) 46.3
Theoretical air requirement (m3/m3) 24

Table 4
Engine operating conditions.

Engine load EGR LPG concentration

3 and 5 bar IMEP 0 and 20% 0, 0.2, 0.5 and 1%
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the combustion chamber. Two different engine loads, 3 and 5 bar
IMEP and a constant engine speed (1500 rpm) were used (Table 4).
To examine the effect of EGR addition on the LPG-diesel dual fuelled
engine operation a 20% EGR concentration was employed. This is
expressed as a volumetric percentage of the total air inlet charge,
with 0% EGR as the baseline. LPG fed into the combustion chamber
was a gas phase with three different levels of flow rates, 0.2, 0.5 and
1% of the total volumetric intake charge air flow rate at the engine
inlet. Engine tests were carried out using standard injection timing.

3. Results and discussion

3.1. Effect of LPG and EGR for ULSD

3.1.1. Combustion
Fig. 2 shows the in-cylinder pressure and rate of heat release

traces of LPGeULSD combustion for different percentages of LPG.
As the LPG percentage was increased the start of combustion (SOC)
Fig. 2. Cylinder pressure and rate of heat release for ULSD. a) 3 bar IMEP, b) 5 bar IME
was slightly delayed. The reasons for justifying this delay include
the low CN of LPG, the higher heat capacity of the mixture and the
lack of oxygen, leading to a longer ignition delay [16]. Moreover, the
more LPG concentration in the cylinder the more pronounced was
the premixed combustion phase. As LPG is inducted along with the
air in the induction stroke, there is sufficient time to mix LPG with
air in the cylinder. This leads to the formation of a ready-
combustible charge mixture, which is burned in the premixed
combustion phase. At low engine load, the premixed combustion
phase was dominant in dual fuel engine operation (Fig. 2a). In
addition, the unburned LPG at this condition resulted in lower in-
cylinder temperature. However, at high engine load the ignition
delay was shortened and the liquid fuel injection was extended
compared to the low engine load. The higher in-cylinder temper-
ature at high engine load promotes LPG combustion. In addition,
the high calorific value of LPG contributes to a higher pressure rise
rate and hence in-cylinder pressure with respect to ULSD. Addi-
tionally, the diffusion combustion phasing was extended (Fig. 2b).

With EGR addition the SOC was further retarded and the in-
cylinder pressure slightly decreased (Fig. 2c and d). The N2, CO2
and H2O content within EGR potentially lowers the in-cylinder
temperature acting as a heat-absorbing agent due to their high
specific heat capacity (thermal effect) [17,18]. The limited oxygen
availability in the combustion process due to EGR application ends
in poor pre-ignition preparation and longer ignition delay [19,20].
In addition, the combination of EGR and LPG resulted in even longer
ignition delay because of the low CN of LPG.

Up to 60% diesel fuel substitution on a mass basis was obtained
when 1% LPG was inducted at low engine load condition (Fig. 3a).
A higher liquid fuel replacement level was achieved at low engine
load because the percentage of LPG addition was kept constant
while the amount of liquid fuel was low. However, the substitution
of liquid fuel by LPG and EGR should be limited due to misfire and
high combustion variability, as a consequence of the low CN of LPG
and the insufficient oxidant.
P, c) effect of LPG and EGR at 3 bar IMEP, d) effect of LPG and EGR at 5 bar IMEP.



Fig. 3. Liquid fuel replacement and COV of IMEP for ULSD.

Fig. 4. Brake thermal efficiency for ULSD.

Fig. 5. Hydrocarbon and carbon monoxide emissions for ULSD.
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Combustion stability, which is indicated by the coefficient of
variation (COV) of indicated mean effective pressure (IMEP), was in
the acceptable range (lower than 5%) in all the tested conditions
(Fig. 3b) [21]. An increasing trend is observed with the increase in
LPG quantity, limiting the use of LPG-diesel dual fuel operation. A
non-uniform mixture may lead to unstable combustion under
a high LPG fraction. A higher quantity of LPG reduces the amount of
combustion air and the in-cylinder injected diesel fuel, leading to
misfire which can produce relatively high cycle-by-cycle variation
[9,22].

The reasons to explain the decreased brake thermal efficiency
(Fig. 4) in LPG-diesel dual fuelled engine operation mode can be
the reduction in volumetric efficiency, incomplete combustion,
reduced flame propagation and an abundant presence of residual
gases [4,9,23]. Furthermore, the reduction in the amount of liquid
fuel used to initiate the combustion has adverse effects on the
quality of liquid fuel spray. This produces poor liquid fuel prepara-
tion and atomisation due to a slow development of fine droplets
which affects themixture combustionprocess [21]. These factors led
to a shift of combustion to the expansion stroke, hence producing
less useful work [16]. With EGR addition, it enriches the inducted
LPG-air charge mixture increasing slightly the intake temperature
which could enhance LPG combustion [4,23]. Therefore, the engine
thermal efficiencywasnot furtherdeteriorated compared to 0%EGR.

3.1.2. Emissions
An increase in HC and CO emissions was observed in LPG-diesel

dual fuelling especially in 1% LPG at low engine load condition
(Fig. 5). Reduced volumetric efficiency, poor mixing quality, flame
quenching, and rich premixed mixture at this condition led to
incomplete combustion [4,21]. The lower overall lambda, for
instance at low engine load, from 3.5 (0% LPG) to 2.6 (1% LPG) also
deteriorates the HC and CO emissions levels. In addition, the lower
in-cylinder temperature compared with 0% LPG addition and the
high LPG auto-ignition temperature (Table 3) also led to poor
mixture oxidation. Unburned mixture remains in the cylinder due



Fig. 7. Soluble organic material (SOM) and HC-SOM correlation for ULSD.
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to the slow combustion velocity, which cannot propagate well to
combust all the mixture [23]. At high engine load the trend was
similar to low engine load, but the HC and CO penalty was lower
because of the higher combustion temperature, which promotes
a better rate of mixture decomposition and oxidation. Therefore,
a relatively constant NOx emission in LPG-diesel dual fuelling was
observed compared to diesel only combustion (Fig. 6).

At low engine load although there was a relatively high energy
released in the premixed combustion phase, the LPG and EGR
additions retard the SOC, inhibiting NOx formation [17,19,23,24].
The reduction of the oxygen due to EGR dilution led to extension of
flame region as a result of the mixing between oxygen and fuel was
decelerated. This bigger size of flame region absorbed heat from
their surrounding thus lowering the flame temperature [24]. Lower
in-cylinder pressurewith EGR application (Fig. 2c) suggests that the
combustion temperature decreases as a result of the dilution and
thermal effect of EGR leading to reduced NOx.

At high engine load the higher in-cylinder temperature favours
NOx emissions formation [17]. In addition, when 1% LPG was
inducted, NOx emissions were higher than those obtained with
ULSD only combustion. This suggests that fuel injection modifica-
tion and a limitation on LPG addition are required to avoid this NOx

penalty at high engine load.
Soot is mainly produced in the locally liquid fuel rich regions

which are formed in the combustion process [15,25]. Therefore,
when LPG was inducted into the cylinder it replaced some quantity
of the liquid fuel decreasing the number of locally liquid fuel rich
regions, producing less soot (Fig. 6). Combining EGR and LPG, NOx

emissions can further be improved while keeping the soot levels
low when compared with the diesel only combustion, specifically
at low engine load with 1% LPG addition. It is suggested that at this
condition the local in-cylinder temperature is considerably
reduced, hence inhibiting soot formation. Lean-liquid fuel regions
and low air entrainment because of the presence of gaseous fuel
also hampered the formation of soot precursor [25].

Soluble organic material (SOM) in PM mainly comes from
unburned or partially oxidised hydrocarbons from the parent fuel
and lubricating oil, which are adsorbed/condensed onto soot
particles [26]. The proportion of SOM in the total PM is defined as
soluble organic fraction (SOF) and can be expressed as follows:

SOF ¼ SOM=ðSOMþ SOOTÞ
From Fig. 7a, it was obtained that as LPG additionwas increased,

SOM reduced, even though unburned total hydrocarbons emissions
Fig. 6. Soot-NOx trade-off for ULSD.
were higher (Fig. 7b). The significant reduction of soot with LPG
limits the soot surface area in which organic material can be
adsorbed/condensed, hence reducing SOM. However, the high
concentration of hydrocarbons with LPG addition promotes their
adsorption and condensation onto this limited soot, slightly
increasing SOF (Fig. 8). This SOF increment is limited as most of the
Fig. 8. Soluble organic fraction (SOF) for ULSD.
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engine-out gaseous hydrocarbons in LPG combustion might be
unburned LPG and other light hydrocarbons. These hydrocarbons
have a low dew point restricting their adsorption/condensation
onto soot particles.

The engine operating conditions also affect the quantity of SOM.
In the case of high engine load where lambda was lower, the in-
cylinder temperature was high and hydrocarbons emissions were
lower compared to low engine load hence the SOM was reduced
[27]. In the case of EGR application, the SOM was higher compared
to the case without EGR, while the SOF was lower. When EGR was
added, soot concentration significantly deteriorated, while hydro-
carbons emissions were similar with respect to no EGR application
(Fig. 5a). As a consequence, there is more available soot surface in
which hydrocarbons could be adsorbed or condensed, increasing
the total SOM. However, the organic material per particle was
reduced (SOF), as there were more soot particles while the hydro-
carbons concentration remained similar.

3.2. Effect of liquid fuels

3.2.1. Combustion
Fig. 9 depicts the in-cylinder pressure and heat release rate of

the different liquid fuels at 0 and 1% LPG. Similar results among the
different liquid fuels were obtained when 0.2 and 0.5% of LPG were
added but these combustion patterns are not shown.

The premixed combustion phase with GTL was low because of
the reduction in ignition delay derived from its high CN (Table 2).
Therefore, most of the GTL was burned in the diffusion combustion
phase, extending the combustion duration. However, the SOC of
GTL was comparable to that obtained with ULSD. This similar SOC,
despite the shorter ignition delay of GTL, is due to the delay in the
start of injection (SOI). This delay comes from the low density and
high compressibility of GTL (Table 2). These GTL combustion
Fig. 9. Cylinder pressure and rate of heat release. a) effect of different liquid fuels at 3 bar IM
dual fuel combustion, d) effect of LPG and EGR on LPGeGTL dual fuel combustion.
characteristics resulted in lower in-cylinder pressure. On the other
hand, higher density and bulk modulus of RME make it less
compressible so that the pressure in the injector can develop faster
to reach the required injection pressure [28,29]. This led to an
earlier start of fuel injection and combustion, raising the in-cylinder
pressure.

The addition of LPG and EGR changed the combustion patterns
with respect to the original ones (e.g. LPG-diesel). When 1% LPG
was inducted in GTL dual fuel combustion, the low quantity of GTL
(i.e. reduction in the auto-ignition properties of the mixture)
cannot compensate the injection delay, producing a retard at the
start of ignition. With EGR the SOC for the three fuels was retarded.
The higher heat capacity of the mixture and lower oxygen avail-
ability are the barriers for early ignition. The delay in the SOC was
more noticeable in the case of GTL, as it was explained previously in
1% LPG.

Liquid fuel replacement and combustion variability from cycle-
by-cycle for the different fuels are shown in Fig. 10. RME and ULSD
showed comparable engine thermal efficiencies (Fig. 11). These
similar thermal efficiencies and the lower calorific value of RME led
to a higher quantity of injected RME compared with ULSD resulting
in lower liquid fuel replacement (Fig. 10a).

In the case of GTL dual fuelling, GTL has higher calorific value
compared with ULSD. Therefore, it is expected that a smaller
quantity of GTL is required to achieve the same output engine
power than with ULSD. However, at low engine load the engine
thermal efficiency (explained later) for GTL dual fuelling was lower
compared with ULSD dual fuelling hence more liquid fuel was used
resulting in lower liquid fuel replacement.

The addition of LPG caused an increase in the cyclic variability
for both low and high engine load (Fig. 10b). However, the LPG
penalty to the cyclic variability was more pronounced in the case of
low engine load due to less effective combustion of more diluted in-
EP, b) effect of different liquid fuels at 5 bar IMEP, c) effect of LPG and EGR on LPGeRME



Fig. 10. Liquid fuel replacement and COV of IMEP for different liquid fuels.
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cylinder charge. When the effect of fuel is considered it was ob-
tained that LPG addition to GTL at low engine load caused an
increase in COV of IMEP but in all the cases COV was maintained in
the acceptable range. According to Heywood, the driveability
problems are likely to occur when the value COV of IMEP is more
than 10% [21].

There is no significant difference between the engine thermal
efficiency of RME and ULSD, as it was widely reported in the
literature [30e33] and the trend in the baseline conditions (0% LPG
Fig. 11. Brake thermal efficiency for different liquid fuels.
addition) was kept similar to the dual fuel mode. GTL combustion
showed better engine thermal efficiency compared to that of ULSD
and RME. This gain is due to the improved fuel atomisation and the
high CN of GTL which led to shorter ignition delay [34]. In addition,
enhanced complete fuel oxidation reduces fuel consumption and
improves thermal efficiency [10]. However, in dual fuel mode in low
engine load and 1% LPG addition, the engine thermal efficiency in
LPGeGTL dual fuelling was reduced because of the retarded
combustion as a result of the high compressibility and low density
of GTL. This caused lower in-cylinder temperatures and reduced the
indicated work.

3.2.2. Emissions
At engine operating conditions without LPG, the combustion of

RME and GTL produced lower HC and CO emissions compared to
those of ULSD fuelling (Fig. 12). There are several factors that affect
both formation and oxidation of these emissions. One of them is the
oxygen content in RME which improves HC and CO oxidation [35].
Both higher H/C ratio and CN of GTL (Table 2) compared to ULSD can
help hydrocarbon fuel oxidation. However, with 1% LPG addition,
HC emission was increased in the GTL dual fuelling. This result
indicates a poor oxidation of LPG in GTL dual fuelling mainly due to
less energy released and low combustion temperature.

Soot concentration was gradually reduced as the fraction of LPG
in the cylinder increased for all engine operating conditions and
liquid fuels studied. As it is explained previously, the main reason
for this soot reduction is the decrease of the number of liquid fuel
rich regions in the combustion chamber.
Fig. 12. Hydrocarbon and carbon monoxide emissions for different liquid fuels.
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At low engine load and 0% EGR, NOx emissions also decreased
when LPG was inducted, breaking the soot-NOx trade-off for all the
liquid fuels combustion (Fig. 13a). In 20% EGR, a simultaneous soot
and NOx reduction with LPG application was also obtained
(Fig. 13b). GTL showed better soot-NOx trade-off lines with the
application of EGR than in the case of ULSD (i.e. lower NOx and
comparable soot emissions) at each percentage of LPG addition. The
lower NOx emissions in the case of GTL (paraffinic fuel) are the
result of a slower rate of premixed combustion (see Fig. 9) and
lower in-cylinder temperature, a consequence of its high CN. On the
other hand, the large proportion of fuel which is burned in the
diffusion combustion phase enhances soot formation. However, its
free-aromatic composition balances soot formation and hence
produces similar soot emission to ULSD. Therefore, LPGeGTL dual
fuelled engine mode is a good combination as the high CN of GTL
can partially compensate the poor auto-ignition properties of LPG.

In the case of RME, the oxygen-assisted and slightly advanced
combustion caused a faster combustion rate in the premixed
combustion phase (Fig. 9). These increased the in-cylinder pressure
and temperature and consequently engine-out NOx emissions
compared with ULSD and GTL. Soot emission for RME was the
lowest mainly due to the oxygen content which reduces soot
formation and enhances soot oxidation [13,14,30,32,36]. The
application of EGR in 1% LPG produced a significant reduction in
NOx without increasing soot emission. Based exclusively on soot
and NOx emissions (without taking into account the engine thermal
efficiency, HC and CO penalties) 0% and 20% EGR for GTL and 20%
EGR for RME with 1% LPG are the optimal combinations.
Fig. 13. Soot-NOx trade-off for different liquid fuels. a) 0% EGR, b) 20% EGR.
At high engine load and 0% EGR, a simultaneous soot and NOx

reduction was only seen with GTL dual fuelling. In the case of RME,
NOx gradually increased with LPG addition, limiting the use of LPG-
diesel dual fuel combustion at high engine load without EGR.
However, at 20% EGR a simultaneous reduction in soot and NOx

were obtained for GTL and RME. Comparing fuels, GTL evidenced
a better EGR tolerance at each LPG concentration than RME. In the
case of 1% LPG and RME, the implementation of EGR reduced NOx

emissions without any soot penalty. Therefore for RME, it is sug-
gested a combination of EGR and LPG addition to optimise LPG-
diesel dual fuel combustion.

LPG addition for RME and GTL produced lower SOM (Fig. 14a)
than in the case of liquid only fuel combustion, despite the signif-
icant increment in HC emission (Fig. 14b). As in the case of ULSD,
this is due to the decrease in soot emission and the lower dew point
of unburned hydrocarbons when LPG is added.

RME produced higher SOM emissions than in the case of ULSD
with and without LPG addition (Fig. 14a). This trend can be justified
by the lower volatility of the hydrocarbons emitted using RME [28].
Additionally, the high viscosity and density of RME led to the bigger
fuel size droplets and slower evaporation rate, which could tend to
raise SOM emission [35]. The low soot emission (Fig. 13) but high
SOM for RME resulted in higher SOF compared with ULSD and GTL
(Fig. 15). Generally, SOM emission with GTL is higher than that of
ULSD specifically at high engine load. This is due to the higher T90
(distillation temperature at 90 �C) of GTL and a lower in-cylinder
pressure and temperature compared with ULSD (see Fig. 9) [37].
Fig. 14. Soluble organic material (SOM) and HC-SOM correlation for different
liquid fuels.



Fig. 15. Soluble organic fraction (SOF) for different liquid fuels.
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On the other hand, the absence of aromatic compounds in GTL
reduces soot formation, resulting in a higher SOF compared with
ULSD. As in the case of ULSD, SOF increased for RME and GTL at low
engine load compared with high engine load, as it was previously
explained.

4. Conclusion

The combustion of inducted LPG to diesel combustion signifi-
cantly increases the gaseous HC and CO emissions as a result of its
low CN, replacement of the oxygen concentration and possibly due
to problems associated with mixing air and gaseous fuel. Increased
LPG concentration led to a simultaneous reduction in soot and NOx

emissions.
Different types of diesel fuels used have shown to have no

influence on gaseous HC and CO emissions trends but the substi-
tution of the diesel fuel with RME or GTL resulted in significantly
reduced NOx e Soot emissions trade-off line to lower values, with
the reduction following the order of GTL > RME > ULSD.

The results of the LPGeRME dual fuelling have shown that EGR
would be beneficial at high engine load conditions while in the
LPGeGTL dual fuelling optimisation of the GTL fuel injection char-
acteristics can enhance further low engine load to keep the engine
emission benefits.

Overall, the study confirms that diesel fuel properties need to be
optimised for the different LPG additions in order to obtain the
improved engine-out emissions of LPG-diesel dual fuelling.
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Nomenclature

BS British standard
CAD crank angle degree
CN cetane number
CO carbon monoxide
CO2 carbon dioxide
COV coefficient of variation
DC diffusion-charging
DI direct injection
EGR exhaust gas recirculation
FID flame ionization detector
GTL gas-to-liquid
H2O water
HC hydrocarbon
IMEP indicated mean effective pressure
LCV lower calorific value
LPG liquefied petroleum gas
N2 nitrogen
NOx nitrogen oxides
PM particulate matter
RME rapeseed methyl ester
ROHR rate of heat release
rpm revolutions per minute
SOC start of combustion
SOF soluble organic fraction
SOI start of injection
SOM soluble organic material
ULSD ultra low sulphur diesel
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