Projects per year
Abstract
We study the max-algebraic analogue of equations involving Z-matrices and M-matrices, with an outlook to a more general algebraic setting. We show that these equations can be solved using the Frobenius trace-down method in a way similar to that in nonnegative linear algebra [G.F. Frobenius, Über Matrizen aus nicht negativen Elementen. Sitzungsber. Kön. Preuss. Akad. Wiss., 1912, in Ges. Abh., Vol. 3, Springer, 1968, pp. 546–557; D. Hershkowitz and H. Schneider, Solutions of Z-matrix equations, Linear Algebra Appl. 106 (1988), pp. 25–38; H. Schneider, The influence of the marked reduced graph of a nonnegative matrix on the Jordan form and on related properties: A survey, Linear Algebra Appl. 84 (1986), pp. 161–189], characterizing the solvability in terms of supports and access relations. We give a description of the solution set as combination of the least solution and the eigenspace of the matrix, and provide a general algebraic setting in which this result holds.
Original language | English |
---|---|
Pages (from-to) | 1191-1210 |
Number of pages | 20 |
Journal | Linear and Multilinear Algebra |
Volume | 60 |
Issue number | 10 |
DOIs | |
Publication status | Published - 6 Feb 2012 |
Keywords
- max-algebra
- nonnegative linear algebra
- idempotent semiring
- Z-matrix equations
- Kleene star
Fingerprint
Dive into the research topics of 'Z-matrix equations in max-algebra, nonnegative linear algebra and other semirings'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Perron-Frobenius Theory and Max-Algebraic Combinatorics of Nonnegative Matrices
Butkovic, P. (Principal Investigator)
Engineering & Physical Science Research Council
12/03/12 → 11/03/14
Project: Research Councils