TY - GEN
T1 - Ultra-fast rumor spreading in social networks
AU - Fountoulakis, Nikolaos
AU - Panagiotou, Konstantinos
AU - Sauerwald, Thomas
PY - 2012
Y1 - 2012
N2 - We analyze the popular push-pull protocol for spreading a rumor in networks. Initially, a single node knows of a rumor. In each succeeding round, every node chooses a random neighbor, and the two nodes share the rumor if one of them is already aware of it. We present the first theoretical analysis of this protocol on random graphs that have a power law degree distribution with an arbitrary exponent β > 2. Our main findings reveal a striking dichotomy in the performance of the protocol that depends on the exponent of the power law. More specifically, we show that if 2 < β < 3, then the rumor spreads to almost all nodes in Θ(log log n) rounds with high probability. On the other hand, if β > 3, then Ω(log n) rounds are necessary. We also investigate the asynchronous version of the push-pull protocol, where the nodes do not operate in rounds, but exchange information according to a Poisson process with rate 1. Surprisingly, we are able to show that, if 2 < β < 3, the rumor spreads even in constant time, which is much smaller than the typical distance of two nodes. To the best of our knowledge, this is the first result that establishes a gap between the synchronous and the asynchronous protocol.
AB - We analyze the popular push-pull protocol for spreading a rumor in networks. Initially, a single node knows of a rumor. In each succeeding round, every node chooses a random neighbor, and the two nodes share the rumor if one of them is already aware of it. We present the first theoretical analysis of this protocol on random graphs that have a power law degree distribution with an arbitrary exponent β > 2. Our main findings reveal a striking dichotomy in the performance of the protocol that depends on the exponent of the power law. More specifically, we show that if 2 < β < 3, then the rumor spreads to almost all nodes in Θ(log log n) rounds with high probability. On the other hand, if β > 3, then Ω(log n) rounds are necessary. We also investigate the asynchronous version of the push-pull protocol, where the nodes do not operate in rounds, but exchange information according to a Poisson process with rate 1. Surprisingly, we are able to show that, if 2 < β < 3, the rumor spreads even in constant time, which is much smaller than the typical distance of two nodes. To the best of our knowledge, this is the first result that establishes a gap between the synchronous and the asynchronous protocol.
UR - http://www.scopus.com/inward/record.url?scp=84860123097&partnerID=8YFLogxK
U2 - 10.1137/1.9781611973099.130
DO - 10.1137/1.9781611973099.130
M3 - Conference contribution
AN - SCOPUS:84860123097
SN - 9781611972108
T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
SP - 1642
EP - 1660
BT - Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012
PB - Association for Computing Machinery
T2 - 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012
Y2 - 17 January 2012 through 19 January 2012
ER -