Thin‐wall injection molding of polypropylene using molds with different laser‐induced periodic surface structures

Davide Masato, Marco Sorgato, Afif Batal, Stefan Dimov, Giovanni Lucchetta

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
226 Downloads (Pure)

Abstract

In injection molding, high pressure is required to completely replicate the mold geometry, due to the viscosity of thermoplastic polymers, the reduced thickness of the cavity, and the low mold temperature. The reduction of the drag required to fill a thin-wall injection molding cavity can be promoted by inducing the strong slip of the polymer melt over the mold surface, which occurs within the first monolayer of macromolecules adsorbed at the wall. In this work, the effects of different laser-induced periodic surface structures (LIPSS) topographies on the reduction of the melt flow resistance of polypropylene were characterized. Ultrafast laser processing of the mold surface was used to manufacture nano-scale ripples with different orientation and morphology. Moreover, the effects of those injection molding parameters that mostly affect the interaction between the mold surface and the molten polymer were evaluated. The effect of LIPSS on the slip of the polymer melt was modeled to understand the effect of the different treatments on the pressure required to fill the thin-wall cavity. The results show that LIPPS can be used to treat injection mold surfaces to promote the onset of wall slip, thus reducing the injection pressure up to 13%. POLYM. ENG. SCI., 59:1889–1896, 2019.

Original languageEnglish
Pages (from-to)1889-1896
Number of pages8
JournalPolymer Engineering and Science
Volume59
Issue number9
Early online date19 Jul 2019
DOIs
Publication statusPublished - Sept 2019

Bibliographical note

Publisher Copyright:
© 2019 Society of Plastics Engineers

Keywords

  • laser-induced periodic surface structures
  • mold surface engineering
  • reduction of melt flow resistance
  • thin-wall injection molding
  • wall-slip

ASJC Scopus subject areas

  • Chemistry(all)
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Thin‐wall injection molding of polypropylene using molds with different laser‐induced periodic surface structures'. Together they form a unique fingerprint.

Cite this