Thermochemical energy storage in CaCl2-NH3 pair evaluated by rapid multiple adsorption-desorption cycles controlled with wasted iron induction heating

Tomasz Siudyga, Karolina Wojtacha-Rychter, Argyrios Anagnostopoulos, Helena Navarro, Yulong Ding, Adam Smolinski*, Malgorzata Magdziarczyk, Pawel Mierczynski, Jaroslaw Polanski

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Downloads (Pure)

Abstract

Energy storing systems can provide leverage to the current supply demand intermittency issue thus increasing energy efficiency. Among many available technologies, thermochemical energy storage is highly promising. In this work, we investigate, experimentally, for the first time, inductive heating as an approach to direct coupling of power systems with thermal energy technologies. This system also allows for versatile measurements in rapid multiple adsorption–desorption cycle control. Adsorption and desorption cycling of the CaCl2-NH3 adducts is realized in a custom-made setup. Iron wires and waste red mud are investigated as potential inductive materials. Material performance is evaluated after 1, 2 and 1000 cycles using differential scanning calorimetry, thermogravimetry, scanning electron microscopy and specific surface area. Waste red mud shows good inductive potential. No material degradation is observed after 1000 cycles in all cases. Samples heated using waste red mud have a higher maximum absorption capacity (0.304 versus 0.154 gNH3/gCaCl2) and desorption enthalpy (716 versus 460 KJ/ kgCaCl2) compared to the ones heated using iron wires. This is found to be related to the average specific surface area of samples containing red mud, which is almost double that of iron ones. We hope the concept presented here can stimulate research in the direction of inductive heating while simultaneously generating new utilization pathways for waste red mud.
Original languageEnglish
Article number113420
Number of pages10
JournalMeasurement
Volume220
Early online date12 Aug 2023
DOIs
Publication statusPublished - Oct 2023

Bibliographical note

Funding Information:
The work has been performed with the financial support of the National Science Centre (Poland) under OPUS Decisions No. 2018/31/B/ST8/00599 and No. 2018/29/B/ST8/02303. This work was partially supported by the Ministry of Science and Higher Education, Poland [Grant No. 11166012]. The research activities co-financed by the funds granted under the Research Excellence Initiative of the University of Silesia in Katowice, Poland.

Publisher Copyright:
© 2023 The Author(s)

ASJC Scopus subject areas

  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Thermochemical energy storage in CaCl2-NH3 pair evaluated by rapid multiple adsorption-desorption cycles controlled with wasted iron induction heating'. Together they form a unique fingerprint.

Cite this