TY - JOUR
T1 - The role of visual occlusion in altitude maintenance during simulated flight
AU - Gray, Robert
AU - Geri, GA
AU - Akhtar, SC
AU - Covas, CM
PY - 2008/4/1
Y1 - 2008/4/1
N2 - The use of visual occlusion as a cue to altitude maintenance in low-altitude flight (LAF) was investigated. The extent to which the ground surface is occluded by 3-D objects varies with altitude and depends on the height, radius, and density of the objects. Participants attempted to maintain a constant altitude during simulated flight over an undulating terrain with trees of various heights, radii, and densities. As would be predicted if participants used occlusion, root-mean-square error was related to the product of tree height and tree density (Experiment 1) and to the product of tree radius and tree density (Experiment 2). This relationship was also found for simulated terrains with a more realistic mixture of tree heights (Experiment 4). The authors present a modification to an occlusion model (T. Leung & J. Malik, 1997) that can be used to approximate occlusion in the context of LAF, and they evaluate the modified model using the present LAF data. On a practical level, simulating 3-D objects is computationally expensive. The present results suggest that performance may be maintained with fewer objects if their size is increased.
AB - The use of visual occlusion as a cue to altitude maintenance in low-altitude flight (LAF) was investigated. The extent to which the ground surface is occluded by 3-D objects varies with altitude and depends on the height, radius, and density of the objects. Participants attempted to maintain a constant altitude during simulated flight over an undulating terrain with trees of various heights, radii, and densities. As would be predicted if participants used occlusion, root-mean-square error was related to the product of tree height and tree density (Experiment 1) and to the product of tree radius and tree density (Experiment 2). This relationship was also found for simulated terrains with a more realistic mixture of tree heights (Experiment 4). The authors present a modification to an occlusion model (T. Leung & J. Malik, 1997) that can be used to approximate occlusion in the context of LAF, and they evaluate the modified model using the present LAF data. On a practical level, simulating 3-D objects is computationally expensive. The present results suggest that performance may be maintained with fewer objects if their size is increased.
U2 - 10.1037/0096-1523.34.2.475
DO - 10.1037/0096-1523.34.2.475
M3 - Article
C2 - 18377183
SN - 1939-1277
VL - 34
SP - 475
EP - 488
JO - Journal of Experimental Psychology: Human Perception and Performance
JF - Journal of Experimental Psychology: Human Perception and Performance
IS - 2
ER -