Abstract
With the hot stage of a modern aeroengine operating with combustor firing temperatures well beyond the melting point of the nickel superalloys from which the turbine blades are manufactured, developments to the methods of cooling of these components are required to advance performance. Double-wall, effusion systems exhibit a quasi-transpiration like cooling effect with recent work demonstrating their exceptional cooling performance. Such systems are characterized by two walls, one with impingement holes and the other with film cooling holes, that are mechanically and thermally connected via pedestals. However, manufacturing such geometries from single-crystal nickel superalloys remains a significant barrier to entry into service. This paper presents a method of manufacturing double-wall effusion specimens from a nickel superalloy commonly used in modern commercial high-pressure turbine components. The method maintains the mechanical integrity associated with nickel superalloys. Details of the method are presented alongside X-ray and GOM laser scan data of a flat-plate test article that demonstrates the success of the manufacturing process. Aerothermal testing of the specimen in a bespoke recirculating wind-tunnel facility was undertaken in which the overall cooling effectiveness of the system is obtained. The results reaffirm the excellent cooling performance of double-wall, effusion systems and further validate the manufacturing methodology as a method by which to realize enhanced cooling effectiveness in service.
Original language | English |
---|---|
Article number | 011001 |
Number of pages | 9 |
Journal | Journal of Engineering for Gas Turbines and Power |
Volume | 146 |
Issue number | 1 |
Early online date | 17 Oct 2023 |
DOIs | |
Publication status | Published - Jan 2024 |
Event | ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023 - Boston, United States Duration: 26 Jun 2023 → 30 Jun 2023 |
Bibliographical note
Publisher Copyright:© 2024 by Rolls-Royce plc.
ASJC Scopus subject areas
- Nuclear Energy and Engineering
- Fuel Technology
- Aerospace Engineering
- Energy Engineering and Power Technology
- Mechanical Engineering