The hMsh2-hMsh6 Complex Acts in Concert with Monoubiquitinated PCNA and Pol eta in Response to Oxidative DNA Damage in Human Cells

A Zlatanou, E Despras, T Braz-Petta, I Boubakour-Azzouz, C Pouvelle, Grant Stewart, S Nakajima, A Yasui, AA Ishchenko, PL Kannouche

Research output: Contribution to journalArticle

96 Citations (Scopus)

Abstract

Posttranslational modification of PCNA by ubiquitin plays an important role in coordinating the processes of DNA damage tolerance during DNA replication. The monoubiquitination of PCNA was shown to facilitate the switch between the replicative DNA polymerase with the low-fidelity polymerase eta (eta) to bypass UV-induced DNA lesions during replication. Here, we show that in response to oxidative stress, PCNA becomes transiently monoubiquitinated in an S phase- and USP1-independent manner. Moreover, Pol eta interacts with mUb-PCNA at sites of oxidative DNA damage via its PCNA-binding and ubiquitin-binding motifs. Strikingly, while functional base excision repair is not required for this modification of PCNA or Pol eta recruitment to chromatin, the presence of hMsh2-hMsh6 is indispensable. Our findings highlight an alternative pathway in response to oxidative DNA damage that may coordinate the removal of oxidatively induced clustered DNA lesions and could explain the high levels of oxidized DNA lesions in MSH2-deficient cells.
Original languageEnglish
Pages (from-to)649-662
Number of pages14
JournalMolecular Cell
Volume43
Issue number4
DOIs
Publication statusPublished - 1 Aug 2011

Fingerprint

Dive into the research topics of 'The hMsh2-hMsh6 Complex Acts in Concert with Monoubiquitinated PCNA and Pol eta in Response to Oxidative DNA Damage in Human Cells'. Together they form a unique fingerprint.

Cite this