TY - JOUR
T1 - The effect of machined surface topography and integrity on fatigue life
AU - Novovic, Donka
AU - Dewes, Richard
AU - Aspinwall, David
AU - Voice, W
AU - Bowen, Paul
PY - 2004/9/2
Y1 - 2004/9/2
N2 - The paper reviews published data which address the effect of machining (conventional and non-conventional processes) and the resulting workpiece surface topography/integrity on fatigue performance, for a variety of workpiece materials. The effect of post-machining surface treatments, such as shot peening, are also detailed. The influence of amplitude height parameters (Ra, Rt), amplitude distribution (Rsk) and shape (Rku) parameters, as well as spatial (Std, Sal) and hybrid (Ssc) measures, are considered. There is some disagreement in the literature about the correlation between workpiece surface roughness and fatigue life. In most cases, it has been reported that lower roughness results in longer fatigue life, but that for roughness values in the range 2.5-5 mum Ra it is primarily dependent on workpiece residual stress and surface microstructure, rather than roughness. In the absence of residual stress, machined surface roughness in excess of 0.1 mum Ra has a strong influence on fatigue life. Temperatures above 400 degreesC reduce the effects of both residual stress and surface roughness on fatigue, due to stress relieving and the change in crack initiation from the surfaces to internal sites. The presence of inclusions an order of magnitude larger than the machined surface roughness generally overrides the effect of surface topography. (C) 2003 Elsevier Ltd. All rights reserved.
AB - The paper reviews published data which address the effect of machining (conventional and non-conventional processes) and the resulting workpiece surface topography/integrity on fatigue performance, for a variety of workpiece materials. The effect of post-machining surface treatments, such as shot peening, are also detailed. The influence of amplitude height parameters (Ra, Rt), amplitude distribution (Rsk) and shape (Rku) parameters, as well as spatial (Std, Sal) and hybrid (Ssc) measures, are considered. There is some disagreement in the literature about the correlation between workpiece surface roughness and fatigue life. In most cases, it has been reported that lower roughness results in longer fatigue life, but that for roughness values in the range 2.5-5 mum Ra it is primarily dependent on workpiece residual stress and surface microstructure, rather than roughness. In the absence of residual stress, machined surface roughness in excess of 0.1 mum Ra has a strong influence on fatigue life. Temperatures above 400 degreesC reduce the effects of both residual stress and surface roughness on fatigue, due to stress relieving and the change in crack initiation from the surfaces to internal sites. The presence of inclusions an order of magnitude larger than the machined surface roughness generally overrides the effect of surface topography. (C) 2003 Elsevier Ltd. All rights reserved.
KW - surface integrity
KW - surface topography
KW - fatigue life
UR - http://www.scopus.com/inward/record.url?scp=0346724503&partnerID=8YFLogxK
U2 - 10.1016/j.ijmachtools.2003.10.018
DO - 10.1016/j.ijmachtools.2003.10.018
M3 - Article
VL - 44
SP - 125
EP - 134
JO - International Journal of Machine Tools and Manufacture
JF - International Journal of Machine Tools and Manufacture
IS - 2-3
ER -