Surrogate models in evolutionary single-objective optimization: a new taxonomy and experimental study

Hao Tong, Changwu Huang, Leandro Minku, Xin Yao

Research output: Contribution to journalArticlepeer-review


Surrogate-assisted evolutionary algorithms (SAEAs), which use efficient surrogate models or meta-models to approximate the fitness function in evolutionary algorithms (EAs), are effective and popular methods for solving computationally expensive optimization problems. During the past decades, a number of SAEAs have been proposed by combining different surrogate models and EAs. This paper dedicates to providing a more systematical review and comprehensive empirical study of surrogate models used in single-objective SAEAs. A new taxonomy of surrogate models in SAEAs for single-objective optimization is introduced in this paper. Surrogate models are classified into two major categories: absolute fitness models, which directly approximate the fitness function values of candidate solutions, and relative fitness models, which estimates the relative rank or preference of candidates rather than their fitness values. Then, the characteristics of different models are analyzed and compared by conducting a series of experiments in terms of time complexity (execution time), model accuracy, parameter influence, and the overall performance when used in EAs. The empirical results are helpful for researchers to select suitable surrogate models when designing SAEAs. Open research questions and future work are discussed at the end of the paper.
Original languageEnglish
Pages (from-to)414-437
JournalInformation Sciences
Early online date8 Mar 2021
Publication statusE-pub ahead of print - 8 Mar 2021


  • Absolute fitness models
  • Evolutionary algorithms
  • Expensive optimization problems
  • Relative fitness models
  • Surrogate models

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Theoretical Computer Science
  • Computer Science Applications
  • Information Systems and Management
  • Artificial Intelligence


Dive into the research topics of 'Surrogate models in evolutionary single-objective optimization: a new taxonomy and experimental study'. Together they form a unique fingerprint.

Cite this