Strong and ductile FeNiCoAl-based high-entropy alloys for cryogenic to elevated temperature multifunctional applications

Cheng Zhang, Qin Yu, Yuanbo T. Tang, Mingjie Xu, Haoren Wang, Chaoyi Zhu, Jon Ell, Shiteng Zhao, Benjamin E. Macdonald, Penghui Cao, Julie M. Schoenung, Kenneth S. Vecchio*, Roger C. Reed, Robert O. Ritchie*, Enrique J. Lavernia*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The highly tunable properties of multi-principal element alloys, commonly known as high-entropy alloys (HEAs), provide a remarkable potential for the development of superior materials for critical structural applications that involve extreme conditions. However, the optimization of the properties of HEAs has been primarily limited to behavior at either low or high temperatures. Here, we report on a non-equiatomic, heterostructured, high-entropy alloy FeNiCoAlTaB which possesses remarkable combinations of mechanical properties across a wide range of temperatures from 77 K to 1073 K. The current metastable alloy presents good ductility and superior engineering tensile strengths of 2.2 GPa, 1.4 GPa, 800 MPa, and 500 MPa at 77 K, 298 K, 873 K, and 1073 K, respectively. This behavior is achieved by a synergic sequence of individual mechanisms that are activated at different temperatures. The alloy even displays pseudoelasticity at 77 K with an applied load up to 2 GPa. This work provides a methodology for tailoring structural heterogeneity and metastability in the design and fabrication of multifunctional HEAs that will outperform known metals and alloys over a wide range of temperatures.
Original languageEnglish
Article number118449
Number of pages13
JournalActa Materialia
Volume242
Early online date19 Oct 2022
DOIs
Publication statusPublished - 1 Jan 2023

Bibliographical note

Funding:
C.Z., B.E.M., and E.J.L. acknowledge support from the BIAM-UCI Research Center for the Fundamental Study of Novel Structural Materials (Research Agreement #210263). C.Z. and M.X. acknowledge the use of facilities and instrumentation at the UC Irvine Materials Research Institute (IMRI), which is supported in part by the National Science Foundation through the UC Irvine Materials Research Science and Engineering Center (DMR-2011967). J.M.S acknowledges support from the UCI Samueli School of Engineering and the Army Research Office (W911NF 18-1-0279). Q.Y. and R.O.R. acknowledge support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05-CH11231.

Keywords

  • High-entropy alloy
  • Strength-ductility synergy
  • Pseudoelasticity
  • Cryogenic temperatures
  • Elevated temperatures
  • Heterogeneous structures

Fingerprint

Dive into the research topics of 'Strong and ductile FeNiCoAl-based high-entropy alloys for cryogenic to elevated temperature multifunctional applications'. Together they form a unique fingerprint.

Cite this