Simulated winter warming negatively impacts survival of Antarctica's only endemic insect

Jack J. Devlin*, Laura Unfried, Melise C. Lecheta, Eleanor A. McCabe, Josiah D Gantz, Yuta Kawarasaki, Michael A. Elnitsky, Scott Hotaling, Andrew P. Michel, Peter Convey, Scott A.L. Hayward, Nicholas M. Teets

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Antarctic winters are challenging for terrestrial invertebrates, and species that live there have specialised adaptations to conserve energy and protect against cold injury in the winter. However, rapidly occurring climate change in these regions will increase the unpredictability of winter conditions, and there is currently a dearth of knowledge on how the highly adapted invertebrates of Antarctica will respond to changes in winter temperatures.

We evaluated the response of larvae of the Antarctic midge, Belgica antarctica, to simulated winters at three ecologically relevant mean temperature scenarios: warm (−1°C), normal (−3°C) and cold (−5°C). Within each scenario, larvae were placed into three distinct habitat types in which they are commonly observed (decaying organic matter, living moss, and Prasiola crispa algae). Following the simulated overwintering period, a range of physiological outcomes were measured, namely survival, locomotor activity, tissue damage, energy store levels and molecular stress responses.

Survival, energy stores and locomotor activity were significantly lower following the Warm overwintering environment than at lower temperatures, but tissue damage and heat shock protein expression (a proxy for protein damage) did not significantly differ between the three temperatures. Survival was also significantly lower in larvae overwintered in Prasiola crispa algae, although the underlying mechanism is unclear. Heat shock proteins were expressed least in larvae overwintering in living moss, suggesting it is less stressful to overwinter in this substrate, perhaps due to a more defined structure affording less direct contact with ice.

Our results demonstrate that a realistic 2°C increase in winter microhabitat temperature reduces survival and causes energy deficits that have implications for subsequent development and reproduction. While our Warm winter scenario was close to the range of observed overwintering temperatures for this species, warmer winters are expected to become more common in response to climate change. Conversely, if climate change reduces the length of winter, some of the negative consequences of winter warming may be attenuated, so it will be important to consider this factor in future studies. Nonetheless, our results indicate that winter warming could negatively impact cold-adapted insects such as the Antarctic midge. Read the free Plain Language Summary for this article on the Journal blog.

Original languageEnglish
Pages (from-to)1949-1960
Number of pages12
JournalFunctional Ecology
Volume36
Issue number8
Early online date12 Jun 2022
DOIs
Publication statusPublished - Aug 2022

Bibliographical note

Funding Information:
This work is supported by the National Science Foundation Grant OPP‐1850988 to N.M.T. and A.P.M., the Hatch Project 1010996 from the USDA National Institute of Food and Agriculture to N.M.T. and the NERC Grant NE/T009446/1 to S.A.L.H. and P.C. We thank the support staff of the R/V Laurence M. Gould and Palmer Station for their invaluable assistance to this project. We also acknowledge Debbie Harner and Jacob Idec for assistance with collecting insects.

Publisher Copyright:
© 2022 British Ecological Society.

Keywords

  • Antarctica
  • climate change
  • entomology
  • microclimate
  • physiological ecology

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics

Fingerprint

Dive into the research topics of 'Simulated winter warming negatively impacts survival of Antarctica's only endemic insect'. Together they form a unique fingerprint.

Cite this