Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array

M. Falxa*, S. Babak, P. T. Baker, B. Bécsy, A. Chalumeau, S. Chen, Z. Chen, N. J. Cornish, L. Guillemot, J. S. Hazboun, C. M. F. Mingarelli, A. Parthasarathy, A. Petiteau, N. S. Pol, A. Sesana, S. B. Spolaor, S. R. Taylor, G. Theureau, M. Vallisneri, S. J. VigelandC. A. Witt, X. Zhu, J. Antoniadis, Z. Arzoumanian, M. Bailes, N. D. R. Bhat, L. Blecha, A. Brazier, P. R. Brook, N. Caballero, A. D. Cameron, J. A. Casey-Clyde, D. Champion, M. Charisi, S. Chatterjee, I. Cognard, J. M. Cordes, F. Crawford, H. T. Cromartie, K. Crowter, S. Dai, M. E. DeCesar, P. B. Demorest, G. Desvignes, T. Dolch, B. Drachler, Y. Feng, E. C. Ferrara, W. Fiore, E. Fonseca, N. Garver-Daniels, J. Glaser, B. Goncharov, D. C. Good, J. Griessmeier, Y. J. Guo, K. Gültekin, G. Hobbs, H. Hu, K. Islo, J. Jang, R. J. Jennings, A. D. Johnson, M. L. Jones, J. Kaczmarek, A. R. Kaiser, D. L. Kaplan, M. Keith, L. Z. Kelley, M. Kerr, J. S. Key, N. Laal, M. T. Lam, W. G. Lamb, T. J. W. Lazio, K. Liu, T. Liu, J. Luo, R. S. Lynch, D. R. Madison, R. Main, R. Manchester, A. McEwen, J. McKee, M. A. McLaughlin, C. Ng, D. J. Nice, S. Ocker, K. D. Olum, S. Osłowski, T. T. Pennucci, B. B. P. Perera, D. Perrodin, N. Porayko, A. Possenti, H. Quelquejay-Leclere, S. M. Ransom, P. S. Ray, D. J. Reardon, C. J. Russell, A. Samajdar, J. Sarkissian, L. Schult, G. Shaifullah, R. M. Shannon, B. J. Shapiro-Albert, X. Siemens, J. J. Simon, M. Siwek, T. L. Smith, L. Speri, R. Spiewak, I. H. Stairs, B. Stappers, D. R. Stinebring, J. K. Swiggum, C. Tiburzi, J. Turner, A. Vecchio, J. P. W. Verbiest, H. Wahl, S. Q. Wang, J. Wang, J. Wang, Z. Wu, L. Zhang, S. Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Downloads (Pure)

Abstract

The International Pulsar Timing Array 2nd data release is the combination of datasets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95% upper limits on their amplitude h 95 . The most sensitive frequency is 10nHz with h 95 = 9.1 10-15 . We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit.
Original languageEnglish
Pages (from-to)5-77-5086
Number of pages10
JournalMonthly Notices of the Royal Astronomical Society
Volume521
Issue number4
Early online date21 Mar 2023
DOIs
Publication statusPublished - 1 Jun 2023

Bibliographical note

Publication:
Monthly Notices of the Royal Astronomical Society, Volume 521, Issue 4, pp.5077-5086
Pub Date: June 2023

Keywords

  • gr-qc
  • astro-ph.IM

Fingerprint

Dive into the research topics of 'Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array'. Together they form a unique fingerprint.

Cite this