Scalability of Generalized Adaptive Differential Evolution for Large-Scale Continuous Optimization

Z Yang, Ke Tang, Xin Yao

Research output: Contribution to journalArticle

82 Citations (Scopus)

Abstract

Differential evolution (DE) has become a very powerful tool for global continuous optimization problems. Parameter adaptations are the most commonly used techniques to improve its performance. The adoption of these techniques has assisted the success of many adaptive DE variants. However, most studies on these adaptive DEs are limited to some small-scale problems, e. g. with less than 100 decision variables, which may be quite small comparing to the requirements of real-world applications. The scalability performance of adaptive DE is still unclear. In this paper, based on the analyses of similarities and drawbacks of existing parameter adaptation schemes in DE, we propose a generalized parameter adaptation scheme. Applying the scheme to DE results in a new generalized adaptive DE (GaDE) algorithm. The scalability performance of GaDE is evaluated on 19 benchmark functions with problem scale from 50 to 1,000 decision variables. Based on the comparison with three other algorithms, GaDE is very competitive in both the performance and scalability aspects.
Original languageEnglish
Pages (from-to)2141-2155
Number of pages15
JournalSoft Computing
Volume15
Issue number11
Early online date11 Sep 2010
DOIs
Publication statusPublished - 1 Nov 2011

Keywords

  • Scalability
  • Large-scale optimization
  • Differential evolution
  • Parameter adaptation

Fingerprint

Dive into the research topics of 'Scalability of Generalized Adaptive Differential Evolution for Large-Scale Continuous Optimization'. Together they form a unique fingerprint.

Cite this