Ring-opening polymerisation of alkyl-substituted ε-caprolactones: kinetic effects of substitution position†

Cinzia Clamor, James Beament, Peter M. Wright, Beatrice N. Cattoz, Rachel K. O'Reilly*, Andrew P. Dove*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Downloads (Pure)

Abstract

Ring-opening polymerisation (ROP) of lactones has been proven as a powerful technique to generate polyesters with high levels of control over molar mass and polymer dispersity. However, the introduction of functional groups on the monomer ring structure can dramatically influence the ability of a monomer to undergo ROP. Therefore, understanding the structure–reactivity relationship of functional monomers is essential to gain access to materials with chemical functionality via direct polymerisation. Herein, we report how structural modifications of alkyl-substituted ε-caprolactones affected their reactivity towards the ring-opening of the functional monomer. We observed that the reactivity was strongly influenced by the substituent position, wherein the δ-substituted monomer exhibited the fastest polymerisation kinetics. In contrast, a substituent placement in the ε-position significantly reduced polymerisation time compared to other substituent positions. Moreover, the thermal properties of the resultant functional ε-polycaprolactones were investigated and showed no significant change in the thermal transitions. This demonstrates that functional caprolactone monomers with sterically demanding functional groups can still undergo direct ring-opening polymerisation and that careful positioning of these functional groups enables control of the rate of polymerisation, a crucial parameter to be considered for the design of new prospective functional monomers and their industrial applications.
Original languageEnglish
Pages (from-to)1227-1233
Number of pages7
JournalPolymer Chemistry
Volume2024
Issue number15
Early online date20 Feb 2024
DOIs
Publication statusE-pub ahead of print - 20 Feb 2024

Bibliographical note

Acknowledgments:
The authors would like to acknowledge Infineum UK Ltd for funding and delivery of the monomers.

Keywords

  • aliphatic polyesters
  • polycaprolactones
  • lipophilic

Fingerprint

Dive into the research topics of 'Ring-opening polymerisation of alkyl-substituted ε-caprolactones: kinetic effects of substitution position†'. Together they form a unique fingerprint.

Cite this