TY - JOUR
T1 - Reorganization of oscillatory activity in human parietal cortex during spatial updating
AU - Van Der Werf, J.
AU - Buchholz, V.N.
AU - Jensen, O.
AU - Medendorp, W.P.
PY - 2013/3/1
Y1 - 2013/3/1
N2 - Single-neuron recordings have shown that the posterior parietal cortex (PPC) processes spatial information in many frames of reference, including gaze-centered, head-centered, body-centered, and intermediate coding frames. At the population level, rhythmic neuronal synchronization may provide a mechanism by which PPC could selectively emphasize the task-relevant reference frame in spatial processing. Using magnetoencephalography, we tested this hypothesis by studying the modulations in oscillatory activity in a spatial updating task. Human subjects had to remember the location of a target, briefly flashed left or right of central fixation. Next, they refixated and then, after a further memory delay, made a saccade to the memorized target location. We observed gamma-band (>40 Hz) synchronization and alpha-band (8-12 Hz) desychronization in contralateral occipital and parietal areas, both showing updating in a gaze-centered reference frame but with fast and slow time courses, respectively. Furthermore, after updating, ipsilateral areas showed less alpha desynchronization when they had been contralateral to the target before updating. Taken together, our results suggest that power in the gamma band is instantly reorganized to encode task-relevant visuomotor space in a gaze-centered reference frame, while power in the alpha band reflects a regulatory mechanism actively facilitating the gating of the saccade target and inhibiting the original stimulus representation
AB - Single-neuron recordings have shown that the posterior parietal cortex (PPC) processes spatial information in many frames of reference, including gaze-centered, head-centered, body-centered, and intermediate coding frames. At the population level, rhythmic neuronal synchronization may provide a mechanism by which PPC could selectively emphasize the task-relevant reference frame in spatial processing. Using magnetoencephalography, we tested this hypothesis by studying the modulations in oscillatory activity in a spatial updating task. Human subjects had to remember the location of a target, briefly flashed left or right of central fixation. Next, they refixated and then, after a further memory delay, made a saccade to the memorized target location. We observed gamma-band (>40 Hz) synchronization and alpha-band (8-12 Hz) desychronization in contralateral occipital and parietal areas, both showing updating in a gaze-centered reference frame but with fast and slow time courses, respectively. Furthermore, after updating, ipsilateral areas showed less alpha desynchronization when they had been contralateral to the target before updating. Taken together, our results suggest that power in the gamma band is instantly reorganized to encode task-relevant visuomotor space in a gaze-centered reference frame, while power in the alpha band reflects a regulatory mechanism actively facilitating the gating of the saccade target and inhibiting the original stimulus representation
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-84873642046&partnerID=MN8TOARS
U2 - 10.1093/cercor/bhr387
DO - 10.1093/cercor/bhr387
M3 - Article
SN - 1047-3211
VL - 23
SP - 508
EP - 519
JO - Cerebral Cortex
JF - Cerebral Cortex
IS - 3
ER -