TY - JOUR
T1 - Registration between DCT and EBSD datasets for multiphase microstructures
AU - Ball, James A.D.
AU - Oddershede, Jette
AU - Davis, Claire
AU - Slater, Carl
AU - Said, Mohammed
AU - Vashishtha, Himanshu
AU - Michalik, Stefan
AU - Collins, David M.
PY - 2023/10/1
Y1 - 2023/10/1
N2 - The ability to characterise the three-dimensional microstructure of multiphase materials is essential for understanding the interaction between phases and their associated materials properties. Here, laboratory-based diffraction-contrast tomography (lab-based DCT), a recently-established materials characterization technique that can determine grain phases, morphologies, positions and orientations in a voxel-based reconstruction method, was used to map part of a dual-phase steel alloy sample. To assess the resulting microstructures produced by the lab-based DCT technique, an electron backscatter diffraction (EBSD) map was collected within the same sample volume. To identify the two-dimensional (2D) slice of the three-dimensional (3D) lab-based DCT reconstruction that best corresponded to the 2D EBSD map, a novel registration technique based solely on grain-averaged orientations was developed – this registration technique requires very little a priori knowledge of dataset alignment and can be extended to other techniques that only recover grain-averaged orientation data such as far-field 3D X-ray diffraction microscopy. Once the corresponding 2D slice was identified in the lab-based DCT dataset, comparisons of phase balance, grain size, shape and texture were performed between lab-based DCT and EBSD techniques. More complicated aspects of the microstructural morphology such as grain boundary shape and grains less than a critical size were poorly reproduced by the lab-based DCT reconstruction, primarily due to the difference in resolutions of the technique compared with EBSD. However, lab-based DCT is shown to accurately determine the centre-of-mass position, orientation, and size of the large grains for each phase present, austenite and martensitic ferrite. The results reveals a complex ferrite grain network of similar crystal orientations that are absent from the EBSD dataset. Such detail demonstrates that lab-based DCT, as a technique, shows great promise in the field of multi-phase material characterization.
AB - The ability to characterise the three-dimensional microstructure of multiphase materials is essential for understanding the interaction between phases and their associated materials properties. Here, laboratory-based diffraction-contrast tomography (lab-based DCT), a recently-established materials characterization technique that can determine grain phases, morphologies, positions and orientations in a voxel-based reconstruction method, was used to map part of a dual-phase steel alloy sample. To assess the resulting microstructures produced by the lab-based DCT technique, an electron backscatter diffraction (EBSD) map was collected within the same sample volume. To identify the two-dimensional (2D) slice of the three-dimensional (3D) lab-based DCT reconstruction that best corresponded to the 2D EBSD map, a novel registration technique based solely on grain-averaged orientations was developed – this registration technique requires very little a priori knowledge of dataset alignment and can be extended to other techniques that only recover grain-averaged orientation data such as far-field 3D X-ray diffraction microscopy. Once the corresponding 2D slice was identified in the lab-based DCT dataset, comparisons of phase balance, grain size, shape and texture were performed between lab-based DCT and EBSD techniques. More complicated aspects of the microstructural morphology such as grain boundary shape and grains less than a critical size were poorly reproduced by the lab-based DCT reconstruction, primarily due to the difference in resolutions of the technique compared with EBSD. However, lab-based DCT is shown to accurately determine the centre-of-mass position, orientation, and size of the large grains for each phase present, austenite and martensitic ferrite. The results reveals a complex ferrite grain network of similar crystal orientations that are absent from the EBSD dataset. Such detail demonstrates that lab-based DCT, as a technique, shows great promise in the field of multi-phase material characterization.
KW - Diffraction-contrast tomography
KW - Crystallographic texture
KW - 3D characterization
KW - Grain morphology
KW - Steel
U2 - 10.1016/j.matchar.2023.113228
DO - 10.1016/j.matchar.2023.113228
M3 - Article
SN - 1044-5803
VL - 204
JO - Materials Characterization
JF - Materials Characterization
M1 - 113228
ER -