Production and dispersion of free radicals from transient cavitation bubbles: an integrated numerical scheme and applications

Kewen Peng*, Frank G.F. Qin, Runhua Jiang, Wanjun Qu, Qianxi Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
46 Downloads (Pure)

Abstract

As an advanced oxidation process with a wide range of applications, sonochemistry relies on acoustic cavitation to induce free radicals for degrading chemical contaminants. The complete process includes two critical steps: the radical production inside the cavitation bubble, and the ensuing dispersion of these radicals into the bulk solution. To grasp the physicochemical details in this process, we developed an integrated numerical scheme with the ability to quantitatively describe the radical production-dispersion behavior. It employs coupled simulations of bubble dynamics, intracavity chemical reactions, and diffusion–reaction-dominated mass transport in aqueous solutions. Applying this method to the typical case of argon and oxygen bubbles, the production mechanism for the main radicals is revealed. Moreover, the temporal-spatial distribution of the radicals in the liquid phase is presented. The results demonstrate that the enhanced radical production observed in oxygen bubbles can be traced to the initiation reaction O2 + H2O → OH[rad]+HO[rad]2, which requires relatively low activation energy. In the outside liquid region, the dispersion of radicals is limited by robust recombination reactions. The simulated penetration depth of OH[rad] is around 0.2 μm and agrees with reported experimental measurements. The proposed numerical approach can be employed to better capture the radical activity and is instrumental in optimizing the engineering application of sonochemistry.

Original languageEnglish
Article number106067
Number of pages13
JournalUltrasonics Sonochemistry
Volume88
Early online date16 Jun 2022
DOIs
Publication statusPublished - Aug 2022

Bibliographical note

Funding Information:
This work was supported by the Guangdong Basic and Applied Basic Research Foundation (Nos. 2019A1515110755 and 2020A1515110665), Dongguan Technology Bureau (No. 2020507140396), the Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (No. PRP/open-1905), and Guangdong Provincial Key Laboratory of Distributed Energy Systems (No. 2020B12120 60075).

Publisher Copyright:
© 2022 The Author(s)

Keywords

  • Dispersion
  • Free radicals
  • Production
  • Simulation
  • Sonochemistry

ASJC Scopus subject areas

  • Environmental Chemistry
  • Chemical Engineering (miscellaneous)
  • Radiology Nuclear Medicine and imaging
  • Acoustics and Ultrasonics
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Production and dispersion of free radicals from transient cavitation bubbles: an integrated numerical scheme and applications'. Together they form a unique fingerprint.

Cite this