Performance of methods for meta-analysis of diagnostic test accuracy with few studies or sparse data

Y. Takwoingi, B. Guo, Richard D. Riley, J. J. Deeks

Research output: Contribution to journalArticlepeer-review

96 Citations (Scopus)
242 Downloads (Pure)

Abstract

Hierarchical models such as the bivariate and hierarchical summary receiver operating characteristic (HSROC) models are recommended for meta-analysis of test accuracy studies. These models are challenging to fit when there are few studies and/or sparse data (for example zero cells in contingency tables due to studies reporting 100% sensitivity or specificity); the models may not converge, or give unreliable parameter estimates. Using simulation, we investigated the performance of seven hierarchical models incorporating increasing simplifications in scenarios designed to replicate realistic situations for meta-analysis of test accuracy studies. Performance of the models was assessed in terms of estimability (percentage of meta-analyses that successfully converged and percentage where the between study correlation was estimable), bias, mean square error and coverage of the 95% confidence intervals. Our results indicate that simpler hierarchical models are valid in situations with few studies or sparse data. For synthesis of sensitivity and specificity, univariate random effects logistic regression models are appropriate when a bivariate model cannot be fitted. Alternatively, an HSROC model that assumes a symmetric SROC curve (by excluding the shape parameter) can be used if the HSROC model is the chosen meta-analytic approach. In the absence of heterogeneity, fixed effect equivalent of the models can be applied.
Original languageEnglish
JournalStatistical Methods in Medical Research
Early online date26 Jun 2015
DOIs
Publication statusPublished - 2015

Keywords

  • Diagnostic accuracy
  • meta-analysis
  • hierarchical models
  • HSROC model
  • bivariate model
  • sensitivity
  • specificity
  • diagnostic odds ratio
  • sparse data
  • random effects

Fingerprint

Dive into the research topics of 'Performance of methods for meta-analysis of diagnostic test accuracy with few studies or sparse data'. Together they form a unique fingerprint.

Cite this