PDGF is a potent initiator of bone formation in a tissue engineered model of pathological ossification

Owen G. Davies*, Liam M. Grover, Mark P. Lewis, Yang Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)
83 Downloads (Pure)

Abstract

Heterotopic ossification (HO) is a debilitating condition defined by the rapid formation of bone in soft tissues. What makes HO fascinating is first the rate at which bone is deposited, and second the fact that this bone is structurally and compositionally similar to that of a healthy adult. If the mechanisms governing HO are understood, they have the potential to be exploited for the development of potent osteoinductive therapies. With this aim, a tissue-engineered skeletal muscle was used model to better understand the role of inflammation on this debilitating phenomenon. It was shown that myoblasts could be divided into two distinct populations: myogenic cells and undifferentiated ‘reserve’ cells. Gene expression analysis of myogenic and osteoregulatory markers confirmed that ‘reserve’ cells were primed for osteogenic differentiation but had a reduced capacity for myogenesis. Osteogenic differentiation was significantly enhanced in the presence of platelet-derived growth factor (PDGF)-BB and bone morphogenetic protein 2 (BMP2), and correlated with conversion to a Sca-1+/CD73+ phenotype. Alizarin red staining showed that PDGF-BB promoted significantly more mineral deposition than BMP2. Finally, it was shown that PDGF-induced mineralization was blocked in the presence of the pro-inflammatory cytokines tumour necrosis factor-α and interleukin 1. In conclusion, the present study identified that PDGF-BB is a potent osteoinductive factor in a model of tissue-engineered skeletal muscle, and that the osteogenic capacity of this protein was modulated in the presence of pro-inflammatory cytokines. These findings reveal a possible mechanism by which HO develops following trauma. Importantly, these findings have implications for the induction and control of bone formation for regenerative medicine.

Original languageEnglish
Pages (from-to)e355-e367
Number of pages14
JournalJournal of Tissue Engineering and Regenerative Medicine
Volume12
Issue number1
Early online date3 Oct 2016
DOIs
Publication statusPublished - Jan 2018

Keywords

  • bone
  • heterotopic ossification
  • inflammation
  • osteoprogenitor
  • PDGF
  • skeletal muscle

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'PDGF is a potent initiator of bone formation in a tissue engineered model of pathological ossification'. Together they form a unique fingerprint.

Cite this