Optimisation of 16S rRNA gut microbiota profiling of extremely low birth weight infants

Cristina Alcon-Giner, Shabhonam Caim, Suparna Mitra, Jennifer Ketskemety, Udo Wegmann, John Wain, Gusztav Belteki, Paul Clarke, Lindsay J. Hall*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Background: Infants born prematurely, particularly extremely low birth weight infants (ELBW) have altered gut microbial communities. Factors such as maternal health, gut immaturity, delivery mode, and antibiotic treatments are associated with microbiota disturbances, and are linked to an increased risk of certain diseases such as necrotising enterocolitis. Therefore, there is a requirement to optimally characterise microbial profiles in this at-risk cohort, via standardisation of methods, particularly for studying the influence of microbiota therapies (e.g. probiotic supplementation) on community profiles and health outcomes. Profiling of faecal samples using the 16S rRNA gene is a cost-efficient method for large-scale clinical studies to gain insights into the gut microbiota and additionally allows characterisation of cohorts were sample quantities are compromised (e.g. ELBW infants). However, DNA extraction method, and the 16S rRNA region targeted can significantly change bacterial community profiles obtained, and so confound comparisons between studies. Thus, we sought to optimise a 16S rRNA profiling protocol to allow standardisation for studying ELBW infant faecal samples, with or without probiotic supplementation. Methods: Using ELBW faecal samples, we compared three different DNA extraction methods, and subsequently PCR amplified and sequenced three hypervariable regions of the 16S rRNA gene (V1 + V2 + V3), (V4 + V5) and (V6 + V7 + V8), and compared two bioinformatics approaches to analyse results (OTU and paired end). Paired shotgun metagenomics was used as a 'gold-standard'. Results: Results indicated a longer bead-beating step was required for optimal bacterial DNA extraction and that sequencing regions (V1 + V2 + V3) and (V6 + V7 + V8) provided the most representative taxonomic profiles, which was confirmed via shotgun analysis. Samples sequenced using the (V4 + V5) region were found to be underrepresented in specific taxa including Bifidobacterium, and had altered diversity profiles. Both bioinformatics 16S rRNA pipelines used in this study (OTU and paired end) presented similar taxonomic profiles at genus level. Conclusions: We determined that DNA extraction from ELBW faecal samples, particularly those infants receiving probiotic supplementation, should include a prolonged beat-beating step. Furthermore, use of the 16S rRNA (V1 + V2 + V3) and (V6 + V7 + V8) regions provides reliable representation of ELBW microbiota profiles, while inclusion of the (V4 + V5) region may not be appropriate for studies where Bifidobacterium constitutes a resident microbiota member.

Original languageEnglish
Article number841
JournalBMC Genomics
Volume18
Issue number1
DOIs
Publication statusPublished - 2 Nov 2017

Bibliographical note

Funding Information:
This work was funded via a Wellcome Trust Investigator Award to LJH (100,974/C/13/Z), and support of the BBSRC Norwich Research Park Bioscience Doctoral Training Grant (BB/M011216/1, supervisor LJH, student CAG), and Institute Strategic Programme grant for Gut Health and Food Safety, BB/J004529/1 (LJH). Funders had no input into the design of the study, analysis, or interpretation of the data, or in writing the manuscript.

Publisher Copyright:
© 2017 The Author(s).

Keywords

  • 16S rRNA gene sequencing
  • Bifidobacterium
  • DNA extraction
  • Extremely low birth weight infants
  • Microbiota
  • Shotgun sequencing

ASJC Scopus subject areas

  • Biotechnology
  • Genetics

Fingerprint

Dive into the research topics of 'Optimisation of 16S rRNA gut microbiota profiling of extremely low birth weight infants'. Together they form a unique fingerprint.

Cite this