Newly identified climatically and environmentally significant high-latitude dust sources

Outi Meinander*, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria KrupskayaMarkku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. Mcquaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O'neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, Ana Vukovic Vimic

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
22 Downloads (Pure)


Dust particles from high latitudes have a potentially large local, regional, and global significance to climate and the environment as short-lived climate forcers, air pollutants, and nutrient sources. Identifying the locations of local dust sources and their emission, transport, and deposition processes is important for understanding the multiple impacts of high-latitude dust (HLD) on the Earth's systems. Here, we identify, describe, and quantify the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to 1 concerning globally best productive sources, using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD sources shows seasonal character. It is estimated that high-latitude land areas with higher (SI ≥0.5), very high (SI ≥0.7), and the highest potential (SI ≥0.9) for dust emission cover >1670000 km2, >560000 km2, and >240000 km2, respectively. In the Arctic HLD region (≥60°N), land area with SI ≥0.5 is 5.5 % (1 035 059 km2), area with SI ≥0.7 is 2.3 % (440 804 km2), and area with SI ≥0.9 is 1.1 % (208 701 km2). Minimum SI values in the northern HLD region are about 3 orders of magnitude smaller, indicating that the dust sources of this region greatly depend on weather conditions. Our spatial dust source distribution analysis modeling results showed evidence supporting a northern HLD belt, defined as the area north of 50°N, with a "transitional HLD-source area"extending at latitudes 50-58°N in Eurasia and 50-55°N in Canada and a "cold HLD-source area"including areas north of 60°N in Eurasia and north of 58°N in Canada, with currently "no dust source"area between the HLD and low-latitude dust (LLD) dust belt, except for British Columbia. Using the global atmospheric transport model SILAM, we estimated that 1.0 % of the global dust emission originated from the high-latitude regions. About 57 % of the dust deposition in snow- and ice-covered Arctic regions was from HLD sources. In the southern HLD region, soil surface conditions are favorable for dust emission during the whole year. Climate change can cause a decrease in the duration of snow cover, retreat of glaciers, and an increase in drought, heatwave intensity, and frequency, leading to the increasing frequency of topsoil conditions favorable for dust emission, which increases the probability of dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify, and assess the environmental and climate significance of HLD.

Original languageEnglish
Pages (from-to)11889-11930
Number of pages42
JournalAtmospheric Chemistry and Physics
Issue number17
Publication statusPublished - 14 Sept 2022

Bibliographical note

Funding Information:
This research was supported by the Ministry for Foreign Affairs of Finland (IBA project no. PC0TQ4BT-25). The study of dust composition in Moscow and Tiksi was supported by the Russian Science Foundation (grant no. 19-77-30004). Firn core collection on southern Spitsbergen, Svalbard, was co-funded by the Research Council of Norway, Arctic Field Grant 2018 (grant no. 282538), funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies of the University of Silesia, and statutory activities 3841/E–41/S/2018 of the Ministry of Science and Higher Education of Poland. Czech Science Foundation projects 20-06168Y and GA20-20240S and Ministry of Education, Youth and Sports of the Czech Republic projects (nos. LM2015078 and CZ.02.1.01/0.0/0.0/16_013/0001708) were funders. The support of the EPOS-PL project (no. POIR.04.02.00-14-A003/16), co-financed by the European Union from the funds of the European Regional Development Fund (ERDF) to the laboratory facilities at IG PAS used in the study, is also appreciated. European Union COST Action InDust was also involved in funding. The preparation of this paper was partially funded by Icelandic Research Fund (Rannis) grant no. 207057-051. Outi Meinander wwas funded by the Academy of Finland (ACCC Flagship grant no. 337552 and BBrCAC no. 341271), H2020 EU-Interact (no. 730938), the International Arctic Science Committee (IASC Cross-Cutting grant), and the Ministry for Foreign Affairs of Finland (IBA project no. PC0TQ4BT-20). Denis Frolov was funded by the Lomonosov Moscow State University (state topic “Danger and risk of natural processes and phenomena” no. 121051300175-4 and “Evolution of the cryosphere under climate change and anthropogenic impact” no. 121051100164-0). Konrad Kandler was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; grant nos. 264912134, 416816480, and 417012665). Nikolay Kasimov and Elena Aseyeva were funded by the Russian Science Foundation (No. 19-77-30004). Jame King was supported by NSERC Discovery 2016-05417, CFI 36564, and CMN RES00044975. Benjamin Murray, Alberto Sanchez-Marroquin, and Sarah Barr were supported by the European Research Council (648661 MarineIce) and the Natural Environment Research Council (NE/T00648X/1; NE/R006687/1). Ottmar Möhler and Nsikanabasi Silas Umo were funded by the Helmholtz Association of German Research Centres through its “Changing Earth – Sustaining our Future” program. Markku Kulmala, Nikolay Kasimov, and Olga Popovicheva were funded by the Russian Ministry of Education and Science (grant no. 075-15-2021-574). Keyvan Ranjbar and Norman T. O'Neill were funded by the PAHA project (NSERC-CCAR program; RGPCC-433842-2012), the SACIA project (CSA-ESSDA program; 16UASACIA), and the NSERC DG grant of O'Neill (grant no. RGPIN-05002-2014). Ivan Semenkov, Olga Popovicheva, and Nikolay Kasimov were funded by Lomonosov Moscow State University (Interdisciplinary Scientific and Educational School “Future Planet and Global Environmental Change” and project no. 121051400083-1). Zongbo Shi and Clarissa Baldo were funded by the UK Natural Environment Research Council (grant nos. NE/L002493/1 and NE/S00579X).

Publisher Copyright:
© 2022 Outi Meinander et al.

ASJC Scopus subject areas

  • Atmospheric Science


Dive into the research topics of 'Newly identified climatically and environmentally significant high-latitude dust sources'. Together they form a unique fingerprint.

Cite this