Abstract
Anode-supported, micro-tubular solid oxide fuel cells were prepared and operated, utilizing mixed-reactant (methane and air mixture) supply. The cells were composed of conventional materials, i.e. nickel, yttria-stabilized zirconia (Ni-YSZ) as anode supported Material, yttria-stabilized zirconia (YSZ) as electrolyte, and lanthanum strontium manganite (LSM) as cathode material. The cells were operated at various temperatures in between 550 and 800 degrees C with varying methane/air ratio (1:1-1:4.76). Cell performance Was found to be strongly dependent on flow Fate and mixing ratio. At 750 degrees C, the maximum open circuit voltage (OCV) of the cell was 1.05 V at a methane/air ratio of 1:4.76, with a maximum power output of 122 mW cm(-2). The degradation test shows 0.05% performance loss per 24h, thereafter, fluctuations in current density were observed clue to oxidation-reduction cycles over nickel surface. It is therefore concluded that although the methane/air ratio of 1:4.76 gives the best performance but the long-term performance is not guaranteed under Such conditions. (C) 2009 Elsevier B.V. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 39-48 |
Number of pages | 10 |
Journal | Journal of Power Sources |
Volume | 193 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Aug 2009 |
Keywords
- Solid oxide fuel cell
- Micro-tubular
- Mixed-reactant
- Single-chamber
- Air-fuel mixture