Measurement of the sensitivity of two-particle correlations in pp collisions to the presence of hard scatterings

ATLAS Collaboration, Paul Newman

Research output: Contribution to journalArticlepeer-review

26 Downloads (Pure)

Abstract

A key open question in the study of multi-particle production in high-energy collisions is the relationship between the "ridge’’ – observed azimuthal correlations between particles in the underlying event that extend over all rapidities – and hard or semi-hard scattering processes. In particular, it is not known whether jets or their soft fragments are correlated with particles in the underlying event. To address this question, two-particle correlations are measured in collisions at √s = 13 using data collected by the ATLAS experiment at the LHC, with an integrated luminosity of 15.8~pb−1, in two different configurations. In the first case, charged particles associated with jets are excluded from the correlation analysis, while in the second case, correlations are measured between particles within jets and charged particles from the underlying event. Second-order flow coefficients, v2, are presented as a function of event multiplicity and transverse momentum. These measurements show that excluding particles associated with jets does not affect the measured correlations. Moreover, particles associated with jets do not exhibit any significant azimuthal correlations with the underlying event, ruling out hard processes contributing to the ridge.
Original languageEnglish
Article number162301
Number of pages21
JournalPhysical Review Letters
Volume131
Issue number16
Early online date16 Oct 2023
DOIs
Publication statusPublished - 20 Oct 2023

Bibliographical note

Acknowledgments:
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; ANID, Chile; CAS, MOST, and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TENMAK, Türkiye; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, and CRC, Canada; PRIMUS 21/SCI/017 and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex, and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya, and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide, and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [44].

Fingerprint

Dive into the research topics of 'Measurement of the sensitivity of two-particle correlations in pp collisions to the presence of hard scatterings'. Together they form a unique fingerprint.

Cite this