Measurement of the centrality dependence of the dijet yield in p+Pb collisions at √SNN = 8.16 TeV with the ATLAS detector

ATLAS Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

The measurement of hard scatterings in proton-nucleus collisions has resulted in a greater understanding of both the proton and nuclear structure. ATLAS measured the centrality dependence of the dijet yield using 165 nb-1 of p+Pb data collected at √SNN = 8.16 TeV in 2016. The event centrality, which reflects the p+Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter. The central-to-peripheral ratio of the scaled dijet yields, RCP, is evaluated, and the results are presented as a function of variables that reflect the kinematics of the initial hard parton scattering process. The RCP shows a scaling with the Bjorken-x of the parton originating from the proton, xp, while no such trend is observed as a function of xPb. This analysis provides unique input to understanding the role of small proton spatial configurations in p+Pb collisions by covering parton momentum fractions from the valence region down to x∼103 and xPb ∼ 4·10-4.
Original languageEnglish
Article number102301
Number of pages22
JournalPhysical Review Letters
Volume132
Issue number10
Early online date7 Mar 2024
DOIs
Publication statusPublished - 8 Mar 2024

Bibliographical note

Acknowledgments:
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; ANID, Chile; CAS, MOST, and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TENMAK, Türkiye; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, and CRC, Canada; PRIMUS 21/SCI/017 and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020, ICSC-NextGenerationEU, and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex, and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programs cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya, and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and BNL (USA), the Tier-2 facilities worldwide, and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [47].

Fingerprint

Dive into the research topics of 'Measurement of the centrality dependence of the dijet yield in p+Pb collisions at √SNN = 8.16 TeV with the ATLAS detector'. Together they form a unique fingerprint.

Cite this