TY - JOUR
T1 - Manganese-enhanced MRI of the rat visual pathway: acute neural toxicity, contrast enhancement, axon resolution, axonal transport, and clearance of Mn(2+)
AU - Thuen, M
AU - Berry, Martin
AU - Pedersen, TB
AU - Goa, PE
AU - Summerfield, Michael
AU - Haraldseth, O
AU - Sandvig, A
AU - Brekken, C
PY - 2008/1/1
Y1 - 2008/1/1
N2 - PURPOSE: To provide dose-response data for the safe and effective use of MnCl(2) for manganese (Mn(2+)) -enhanced MRI (MEMRI) of the visual pathway. MATERIALS AND METHODS: Retinal ganglion cell (RGC) toxicity, CNR in MEMRI, axon density resolution for MEMRI, mode of axonal transport and clearance of Mn(2+) from the vitreous after ivit were investigated. After 0, 30, 150, 300, 1500, and 3000 nmol ivit MnCl(2), neural toxicity was measured by counting surviving RGC back-filled with FluroGold (FG), CNR of the vitreous body and visual pathway by three-dimensional (3D) MEMRI, resolution of ON axon density by correlating CNR with axon density, and axonal transport of Mn(2+) by studying CNR in 3D MEMRI of the ON after ion of 200 nmol MnCl(2). RESULTS: There were no changes in RGC density after ivit MnCl(2) 0 were recorded distally from the ion site, but there was no signal in the retina. At ivit doses >1500 nmol, clearance from the vitreous body was impaired. CONCLUSION: The optimal dose for MEMRI of the rat visual pathway was found to be 150-300 nmol ivit MnCl(2). Higher doses are toxic, causing RGC death, impair active clearance from the vitreous, and loss of Mn(2+) enhancement throughout the visual pathway. Mn(2+) traffic within RGC axons is mediated mainly by anterograde transport.
AB - PURPOSE: To provide dose-response data for the safe and effective use of MnCl(2) for manganese (Mn(2+)) -enhanced MRI (MEMRI) of the visual pathway. MATERIALS AND METHODS: Retinal ganglion cell (RGC) toxicity, CNR in MEMRI, axon density resolution for MEMRI, mode of axonal transport and clearance of Mn(2+) from the vitreous after ivit were investigated. After 0, 30, 150, 300, 1500, and 3000 nmol ivit MnCl(2), neural toxicity was measured by counting surviving RGC back-filled with FluroGold (FG), CNR of the vitreous body and visual pathway by three-dimensional (3D) MEMRI, resolution of ON axon density by correlating CNR with axon density, and axonal transport of Mn(2+) by studying CNR in 3D MEMRI of the ON after ion of 200 nmol MnCl(2). RESULTS: There were no changes in RGC density after ivit MnCl(2) 0 were recorded distally from the ion site, but there was no signal in the retina. At ivit doses >1500 nmol, clearance from the vitreous body was impaired. CONCLUSION: The optimal dose for MEMRI of the rat visual pathway was found to be 150-300 nmol ivit MnCl(2). Higher doses are toxic, causing RGC death, impair active clearance from the vitreous, and loss of Mn(2+) enhancement throughout the visual pathway. Mn(2+) traffic within RGC axons is mediated mainly by anterograde transport.
U2 - 10.1002/jmri.21504
DO - 10.1002/jmri.21504
M3 - Article
C2 - 18821627
SN - 1053-1807
VL - 28
SP - 855
EP - 865
JO - Journal of Magnetic Resonance Imaging
JF - Journal of Magnetic Resonance Imaging
ER -