Abstract
There are a number of localic separation axioms which are roughly analogous to the T1-axiom from classical topology. For instance, besides the well-known subfitness and fitness, there are also Rosický–Šmarda’s T1-locales, totally unordered locales and, more categorically, the recently introduced F-separated locales (i.e., those with a fitted diagonal) — a property strictly weaker than fitness.
It has recently been shown that the strong Hausdorff property and F-separatedness are in a certain sense dual to each other. In this paper, we provide further instances of this duality — e.g., we introduce a new first-order separation property which is to F-separatedness as the Johnstone–Sun-shu-Hao–Paseka–Šmarda conservative Hausdorff axiom is to the strong Hausdorff property, and which can be of independent interest. Using this, we tie up the loose ends of the theory by establishing all the possible implications between these properties and other T1-type axioms occurring in the literature. In particular, we show that the strong Hausdorff property does not imply F-separatedness, a question which remained open and shows a remarkable difference with its counterpart in the category of topological spaces.
It has recently been shown that the strong Hausdorff property and F-separatedness are in a certain sense dual to each other. In this paper, we provide further instances of this duality — e.g., we introduce a new first-order separation property which is to F-separatedness as the Johnstone–Sun-shu-Hao–Paseka–Šmarda conservative Hausdorff axiom is to the strong Hausdorff property, and which can be of independent interest. Using this, we tie up the loose ends of the theory by establishing all the possible implications between these properties and other T1-type axioms occurring in the literature. In particular, we show that the strong Hausdorff property does not imply F-separatedness, a question which remained open and shows a remarkable difference with its counterpart in the category of topological spaces.
Original language | English |
---|---|
Article number | 108785 |
Number of pages | 15 |
Journal | Topology and its Applications |
Volume | 342 |
Early online date | 7 Dec 2023 |
DOIs | |
Publication status | Published - 1 Feb 2024 |
Keywords
- Locale
- Separation axiom
- Closure operator
- T1-axiom
- Saturated subspace
- Fitted sublocale
- Duality
- Strong Hausdorff locale
- F-separated locale