Is VARS more intuitive and efficient than Sobol’ indices?

Arnald Puy, Samuele Lo Piano, Andrea Saltelli

Research output: Contribution to journalArticlepeer-review

11 Downloads (Pure)


The Variogram Analysis of Response Surfaces (VARS) has been proposed by Razavi and Gupta as a new comprehensive framework in sensitivity analysis. According to these authors, VARS provides a more intuitive notion of sensitivity and is much more computationally efficient than Sobol’ indices. Here we review these arguments and critically compare the performance of VARS-TO, for total-order index, against the total-order Jansen estimator. We argue that, unlike classic variance-based methods, VARS lacks a clear definition of what an “important” factor is, and we show that the alleged computational superiority of VARS does not withstand scrutiny. We conclude that while VARS enriches the spectrum of existing methods for sensitivity analysis, especially for a diagnostic use of mathematical models, it complements rather than replaces classic estimators used in variance-based sensitivity analysis.
Original languageEnglish
Article number104960
Number of pages11
JournalEnvironmental Modelling & Software
Early online date18 Jan 2021
Publication statusPublished - Mar 2021


  • Uncertainty
  • Sensitivity analysis
  • Modeling
  • Statistics
  • Design of experiment


Dive into the research topics of 'Is VARS more intuitive and efficient than Sobol’ indices?'. Together they form a unique fingerprint.

Cite this