TY - JOUR
T1 - Intervality and coherence in complex networks
AU - Dominguez-Garcia, Virginia
AU - Johnson, Samuel
AU - Munoz, Miguel A.
PY - 2016/6
Y1 - 2016/6
N2 - Food webs—networks of predators and prey—have long been known to exhibit “intervality”: species can generally be ordered along a single axis in such a way that the prey of any given predator tend to lie on unbroken compact intervals. Although the meaning of this axis—usually identified with a “niche” dimension—has remained a mystery, it is assumed to lie at the basis of the highly non-trivial structure of food webs. With this in mind, most trophic network modelling has for decades been based on assigning species a niche value by hand. However, we argue here that intervality should not be considered the cause but rather a consequence of food-web structure. First, analysing a set of 46 empirical food webs, we find that they also exhibit predator intervality: the predators of any given species are as likely to be contiguous as the prey are, but in a different ordering. Furthermore, this property is not exclusive of trophic networks: several networks of genes, neurons, metabolites, cellular machines, airports, and words are found to be approximately as interval as food webs. We go on to show that a simple model of food-web assembly which does not make use of a niche axis can nevertheless generate significant intervality. Therefore, the niche dimension (in the sense used for food-web modelling) could in fact be the consequence of other, more fundamental structural traits. We conclude that a new approach to food-web modelling is required for a deeper understanding of ecosystem assembly, structure, and function, and propose that certain topological features thought to be specific of food webs are in fact common to many complex networks.
AB - Food webs—networks of predators and prey—have long been known to exhibit “intervality”: species can generally be ordered along a single axis in such a way that the prey of any given predator tend to lie on unbroken compact intervals. Although the meaning of this axis—usually identified with a “niche” dimension—has remained a mystery, it is assumed to lie at the basis of the highly non-trivial structure of food webs. With this in mind, most trophic network modelling has for decades been based on assigning species a niche value by hand. However, we argue here that intervality should not be considered the cause but rather a consequence of food-web structure. First, analysing a set of 46 empirical food webs, we find that they also exhibit predator intervality: the predators of any given species are as likely to be contiguous as the prey are, but in a different ordering. Furthermore, this property is not exclusive of trophic networks: several networks of genes, neurons, metabolites, cellular machines, airports, and words are found to be approximately as interval as food webs. We go on to show that a simple model of food-web assembly which does not make use of a niche axis can nevertheless generate significant intervality. Therefore, the niche dimension (in the sense used for food-web modelling) could in fact be the consequence of other, more fundamental structural traits. We conclude that a new approach to food-web modelling is required for a deeper understanding of ecosystem assembly, structure, and function, and propose that certain topological features thought to be specific of food webs are in fact common to many complex networks.
U2 - 10.1063/1.4953163
DO - 10.1063/1.4953163
M3 - Article
SN - 1054-1500
VL - 26
JO - Chaos
JF - Chaos
M1 - 065308
ER -