TY - JOUR
T1 - Identification of Novel Mt-Guab2 Inhibitor Series Active against M. tuberculosis.
AU - Usha, V
AU - Hobrath, JV
AU - Gurcha, Sudagar
AU - Reynolds, RC
AU - Besra, Gurdyal
PY - 2012/1/1
Y1 - 2012/1/1
N2 - Tuberculosis (TB) remains a leading cause of mortality worldwide. With the emergence of multidrug resistant TB, extensively drug resistant TB and HIV-associated TB it is imperative that new drug targets be identified. The potential of Mycobacterium tuberculosis inosine monophosphate dehydrogenase (IMPDH) as a novel drug target was explored in the present study. IMPDH exclusively catalyzes the conversion of inosine monophosphate (IMP) to xanthosine monophosphate (XMP) in the presence of the cofactor nicotinamide adenine dinucleotide (NAD(+)). Although the enzyme is a dehydrogenase, the enzyme does not catalyze the reverse reaction i.e. the conversion of XMP to IMP. Unlike other bacteria, M. tuberculosis harbors three IMPDH-like genes, designated as Mt-guaB1, Mt-guaB2 and Mt-guaB3 respectively. Of the three putative IMPDH's, we previously confirmed that Mt-GuaB2 was the only functional ortholog by characterizing the enzyme kinetically. Using an in silico approach based on designed scaffolds, a series of novel classes of inhibitors was identified. The inhibitors possess good activity against M. tuberculosis with MIC values in the range of 0.4 to 11.4 µg mL(-1). Among the identified ligands, two inhibitors have nanomolar K(i)s against the Mt-GuaB2 enzyme.
AB - Tuberculosis (TB) remains a leading cause of mortality worldwide. With the emergence of multidrug resistant TB, extensively drug resistant TB and HIV-associated TB it is imperative that new drug targets be identified. The potential of Mycobacterium tuberculosis inosine monophosphate dehydrogenase (IMPDH) as a novel drug target was explored in the present study. IMPDH exclusively catalyzes the conversion of inosine monophosphate (IMP) to xanthosine monophosphate (XMP) in the presence of the cofactor nicotinamide adenine dinucleotide (NAD(+)). Although the enzyme is a dehydrogenase, the enzyme does not catalyze the reverse reaction i.e. the conversion of XMP to IMP. Unlike other bacteria, M. tuberculosis harbors three IMPDH-like genes, designated as Mt-guaB1, Mt-guaB2 and Mt-guaB3 respectively. Of the three putative IMPDH's, we previously confirmed that Mt-GuaB2 was the only functional ortholog by characterizing the enzyme kinetically. Using an in silico approach based on designed scaffolds, a series of novel classes of inhibitors was identified. The inhibitors possess good activity against M. tuberculosis with MIC values in the range of 0.4 to 11.4 µg mL(-1). Among the identified ligands, two inhibitors have nanomolar K(i)s against the Mt-GuaB2 enzyme.
U2 - 10.1371/journal.pone.0033886
DO - 10.1371/journal.pone.0033886
M3 - Article
C2 - 22479467
SN - 1932-6203
VL - 7
SP - e33886
JO - PLoS ONE
JF - PLoS ONE
IS - 3
ER -