Abstract
Implantable medical devices, sensors and wearables are widely deployed today. However, establishing a secure wireless communication channel to these devices is a major challenge, amongst others due to the constraints on energy consumption and the need to obtain immediate access in emergencies. To address this issue, researchers have proposed various key agreement protocols based on the measurement of physiological signals such as a person’s heart signal. At the core of such protocols are fuzzy cryptographic primitives that allow to agree on a shared secret based on several simultaneous, noisy measurements of the same signal. So far, although many fuzzy primitives have been proposed, there is no comprehensive evaluation and comparison yet of the overhead that such methods incur on resource-constrained embedded devices. In this paper, we study the feasibility of six types of fuzzy cryptographic primitives on embedded devices for 128-bit key agreement. We configure several variants for each fuzzy primitive under different parameter selections and mismatch rates of the physiological signal measurements on an MSP430 microcontroller, and then measure and compare their energy consumption and communication overhead. The most efficient constructions consume between 0.021 mJ and 0.198 mJ for the transmitter and between 0.029 mJ and 0.380 mJ for the receiver under different mismatch rates. Subsequently, we modify the best performing methods so that they run in constant time to protect against timing side-channel attacks, and observe that these changes only minimally affect resource consumption. Finally, we provide open-source implementations and energy consumption data of each fuzzy primitive as a reference for real-world designs.
Original language | English |
---|---|
Title of host publication | Smart Card Research and Advanced Applications - 20th International Conference, CARDIS 2021, Revised Selected Papers |
Subtitle of host publication | 20th International Conference, CARDIS 2021, Lübeck, Germany, November 11–12, 2021, Revised Selected Papers |
Editors | Vincent Grosso, Thomas Pöppelmann |
Publisher | Springer Verlag |
Pages | 289-309 |
Number of pages | 21 |
ISBN (Electronic) | 9783030973483 |
ISBN (Print) | 9783030973476 |
DOIs | |
Publication status | Published - 9 Mar 2022 |
Event | 20th Smart Card Research and Advanced Application Conference - Universität zu Lübeck, Lübeck, Germany Duration: 11 Nov 2021 → 12 Nov 2021 |
Publication series
Name | Lecture Notes in Computer Science |
---|---|
Publisher | Springer |
Volume | 13173 |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 20th Smart Card Research and Advanced Application Conference |
---|---|
Abbreviated title | CARDIS 2021 |
Country/Territory | Germany |
City | Lübeck |
Period | 11/11/21 → 12/11/21 |
Bibliographical note
Funding Information:Acknowledgements. This work is funded in part by the European Union’s Horizon 2020 Research and innovation program under grant agreement No. 826284 (ProTego), the FWO-SBO project SPITE, and by the Engineering and Physical Sciences Research Council (EPSRC) under grant EP/R012598/1. Mo Zhang is funded by the Priestley PhD Scholarship programme. The ECC decoding methods were based in part on the source code of Simon Rockliff [2].
Publisher Copyright:
© 2022, Springer Nature Switzerland AG.
Keywords
- Fuzzy commitment
- Fuzzy vault
- Fuzzy extractor
- Physiological signal
- Key agreement
- Energy consumption
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science