Abstract
Methods for the real-time monitoring of the substrate acceptance of modified nucleotides by DNA polymerases are in high demand. In a step towards this aim, we have incorporated ferrocene-based abasic nucleotides into DNA templates and evaluated their compatibility with enzymatic synthesis of unmodified and modified DNA. All canonical nucleotides can be incorporated opposite ferrocene sites with a strong preference for purines. DNA polymerases with lesion-bypass capacity such as Dpo4 allow DNA synthesis to be resumed beyond the site of incorporation. Modified purine nucleotides can readily be incorporated opposite ferrocene basic site analogs, while pyrimidine nucleotides decorated with simple side-chains are also readily tolerated. These findings open up directions for the design of electrochemical sensing devices for the monitoring of enzymatic synthesis of natural or modified DNA.
Original language | English |
---|---|
Pages (from-to) | 8125-8135 |
Number of pages | 11 |
Journal | Organic and Biomolecular Chemistry |
Volume | 20 |
Issue number | 41 |
Early online date | 5 Oct 2022 |
DOIs | |
Publication status | Published - 7 Nov 2022 |
Bibliographical note
Acknowledgments:C. F. gratefully acknowledges the Pasteur–Paris University (PPU) International Ph.D. Program that has received funding from INCEPTION project (PIA/ANR-16-CONV-0005), the “Ecole Doctorale Frontières de l'Innovation en Recherche et Education—Programme Bettencourt” for financial support. The authors gratefully acknowledge financial support from Institut Pasteur. The Centre for Chemical and Materials Analysis in the School of Chemistry at the University of Birmingham is acknowledged for technical support.