Abstract
In this study, a co-dopant CGO was synthesized to produce more efficient cathode materials for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. Neodymium (Nd) was doped into CGO in four different weight ratios in the formula NdxGd0.15Ce0.85-xO2-δ (NGCO); the selected percentages for x were 1%, 3%, 5% and 7%. XRD patterns showed pure phase for all synthesized compositions and good compatibility at high temperature under static air with the most common ceramic cathode material in IT-SOFC (La0·60Sr0·40Co0·20Fe0·80O2-ä, LSCF). Impedance spectroscopic characterization of symmetrical cells of the composite NGCO-LSCF at different temperatures (650–800 °C in steps of 50 °C) and a frequency range of 0.1–1 MHz in synthetic air revealed interesting results. The lowest polarization resistance (Rp) was achieved for Nd0.05Gd0.15Ce0·80O2-δ (0.06 Ω cm2 at 800 °C, 0.17 Ω cm2 at 750 °C, 0.31 Ω cm2 at 700 °C, and 0.59 Ω cm2 at 650 °C). The expected decrease in Rp was not observed for the sample with higher Nd content (7% Nd). Thus, it can be said that there is a distinction between the compositions Nd0.05Gd0.15Ce0·80O2-δ and Nd0.07Gd0.15Ce0·78O2-δ; the co-doping of Nd in NGCO incremented the oxygen ion diffusion path, thereby optimization in the triple phase boundary (TPB) sites was obtained. Furthermore, SEM and TGA measurements were conducted to clarify the reasons of such improvements. This work showed that an NGCO-LSCF composite can be considered as a potential candidate for cathode material for future IT-SOFC applications.
Original language | English |
---|---|
Pages (from-to) | 21714-21721 |
Journal | International Journal of Hydrogen Energy |
Volume | 45 |
Issue number | 41 |
Early online date | 22 Jul 2020 |
DOIs | |
Publication status | E-pub ahead of print - 22 Jul 2020 |
Keywords
- SOFC
- Cathode
- EIS
- LSCF
- IT- SOFC
- Co-precipitation method
- Cathode material
- Co-doped ceria
- Impedance spectroscopy
- Polarization resistance
ASJC Scopus subject areas
- Ceramics and Composites
- Energy Engineering and Power Technology
- Engineering (miscellaneous)
- Chemical Engineering (miscellaneous)
- Catalysis