Dynamic network properties of the interictal brain determine whether seizures appear focal or generalised

Wessel Woldman, Helmut Schmidt, Eugenio Abela, Fahmida A. Chowdhury, Adam D. Pawley, Sharon Jewell, Mark P. Richardson, John R. Terry

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
195 Downloads (Pure)

Abstract

Current explanatory concepts suggest seizures emerge from ongoing dynamics of brain networks. It is unclear how brain network properties determine focal or generalised seizure onset, or how network properties can be described in a clinically-useful manner. Understanding network properties would cast light on seizure-generating mechanisms and allow to quantify to which extent a seizure is focal or generalised. Functional brain networks were estimated in segments of scalp-EEG without interictal discharges (68 people with epilepsy, 38 controls). Simplified brain dynamics were simulated using a computer model. We introduce: Critical Coupling (Cc), the ability of a network to generate seizures; Onset Index (OI), the tendency of a region to generate seizures; and Participation Index (PI), the tendency of a region to become involved in seizures. Cc was lower in both patient groups compared with controls. OI and PI were more variable in focal-onset than generalised-onset cases. In focal cases, the regions with highest OI and PI corresponded to the side of seizure onset. Properties of interictal functional networks from scalp EEG can be estimated using a computer model and used to predict seizure likelihood and onset patterns. This may offer potential to enhance diagnosis through quantification of seizure type using inter-ictal recordings.

Original languageEnglish
Article number7043
JournalScientific Reports
Volume10
DOIs
Publication statusPublished - 27 Apr 2020

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Dynamic network properties of the interictal brain determine whether seizures appear focal or generalised'. Together they form a unique fingerprint.

Cite this