Doppler compensation for cavity-based atom interferometry

Rustin Nourshargh, Sam Hedges, Mehdi Langlois, Kai Bongs, Michael Holynski

Research output: Contribution to journalArticlepeer-review

16 Downloads (Pure)

Abstract

We propose and demonstrate a scheme for Doppler compensated optical cavity enhancement of atom interferometers at significantly increased mode diameters. This overcomes the primary limitations in cavity enhancement for atom interferometry, circumventing the cavity linewidth limit and enabling spatial mode filtering, power enhancement, and a large beam diameter simultaneously. This approach combines a magnified linear cavity with an intracavity Pockels cell. The Pockels cell induces a voltage-controlled birefringence allowing the cavity mode frequencies to follow the Raman lasers as they track gravitationally induced Doppler shifts, removing the dominant limitation of current cavity enhanced systems. A cavity is built to this geometry and shown to simultaneously realise Doppler compensation, a 5.8 ± 0.15 mm1/e2 diameter beam waist and an enhancement factor of >5× at a finesse of 35. Tuneable Gouy phase enables the suppression of higher order spatial modes and the avoidance of regions of instability. Atom interferometers will see increased contrast at extended interferometry times along with power enhancement and the reduction of optical aberrations. This is relevant to power constrained applications in quantum technology, alongside the absolute performance requirements of fundamental science.

Original languageEnglish
Pages (from-to)30001-30011
Number of pages11
JournalOptics Express
Volume30
Issue number17
Early online date2 Aug 2022
DOIs
Publication statusPublished - 15 Aug 2022

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Doppler compensation for cavity-based atom interferometry'. Together they form a unique fingerprint.

Cite this