Domain-decomposed Bayesian inversion based on local Karhunen-Loève expansions

Zhihang Xu, Qifeng Liao*, Jinglai Li

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Downloads (Pure)

Abstract

In many Bayesian inverse problems the goal is to recover a spatially varying random field. Such problems are often computationally challenging especially when the forward model is governed by complex partial differential equations (PDEs). The challenge is particularly severe when the spatial domain is large and the unknown random field needs to be represented by a high-dimensional parameter. In this paper, we present a domain-decomposed method to attack the dimensionality issue and the method decomposes the spatial domain and the parameter domain simultaneously. On each subdomain, a local Karhunen-Loève (KL) expansion is constructed, and a local inversion problem is solved independently in a parallel manner, and more importantly, in a lower-dimensional space. After local posterior samples are generated through conducting Markov chain Monte Carlo (MCMC) simulations on subdomains, a novel projection procedure is developed to effectively reconstruct the global field. In addition, the domain decomposition interface conditions are dealt with an adaptive Gaussian process-based fitting strategy. Numerical examples are provided to demonstrate the performance of the proposed method.
Original languageEnglish
Article number112856
JournalJournal of Computational Physics
Early online date15 Feb 2024
DOIs
Publication statusE-pub ahead of print - 15 Feb 2024

Bibliographical note

Acknowledgements
This work is supported by the National Natural Science Foundation of China (No. 12071291), the Science and Technology Commission of Shanghai Municipality, China (No. 20JC1414300) and the Natural Science Foundation of Shanghai, China (No. 20ZR1436200).

Keywords

  • Bayesian inference
  • Markov chain Monte Carlo
  • domain decomposition
  • local KL expansions

Fingerprint

Dive into the research topics of 'Domain-decomposed Bayesian inversion based on local Karhunen-Loève expansions'. Together they form a unique fingerprint.

Cite this